Relativistic Electromagnetism
Relativistic electromagnetism is a physical phenomenon explained in electromagnetic field theory due to Coulomb's law and Lorentz transformations. Electromechanics After Maxwell proposed the differential equation model of the electromagnetic field in 1873, the mechanism of action of fields came into question, for instance in the Kelvin’s master class held at Johns Hopkins University in 1884 and commemorated a century later. The requirement that the equations remain consistent when viewed from various moving observers led to special relativity, a geometric theory of 4-space where intermediation is by light and radiation. The spacetime geometry provided a context for technical description of electric technology, especially generators, motors, and lighting at first. The Coulomb force was generalized to the Lorentz force. For example, with this model transmission lines and power grids were developed and radio frequency communication explored. An effort to mount a full-fledged ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Covariant Formulation Of Classical Electromagnetism
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems. This article uses the classical treatment of tensors and Einstein summation convention throughout and the Minkowski metric has the form . Where the equations are specified as holding in a vacuum, one could instead regard them as the formulation of Maxwell's equations in terms of ''total'' charge and current. Fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leigh Page
Leigh Page (October 13, 1884 – September 14, 1952) was an American theoretical physicist. Chairman of Mathematical Physics at the Sloane Physics Laboratory of Yale University for over three decades, he is the namesake of Yale's Leigh Page Prize Lectures. Biography Page was born October 13, 1884, in South Orange, New Jersey to Edward Day Page and Cornelia Lee. He came to the Sheffield Scientific School at Yale in 1909 as an assistant professor in drawing and graduate student under Henry Andrews Bumstead. He switched to physics in 1912, was appointed assistant professor of physics in 1916. He published a survey of "A Century's Progress in Physics" in 1918, and became professor of mathematical physics in 1922, where he remained until his death in 1952. Devoting most of his time to teaching, Page conducted research and wrote several textbooks, which appeared in various editions, often with the assistance of colleague Norman I. Adams. The books ''Electrodynamics'' and ''Intro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Velocity
Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity; both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Constant velocity vs acceleration To have a ''constant velocity'', an object must have a constant speed in a constant direction. Constant direction cons ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electric Field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions (also called forces) of nature. Electric fields are important in many areas of physics, and are exploited in electrical technology. In atomic physics and chemistry, for instance, the electric field is the attractive force holding the atomic nucleus and electrons together in atoms. It is also the force responsible for chemical bonding between atoms that result in molecules. The electric field is defined as a vector field that associates to each point in space the electrostatic ( Coulomb) for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inertial Frame Of Reference
In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. It is a frame in which an isolated physical object — an object with zero net force acting on it — is perceived to move with a constant velocity (it might be a zero velocity) or, equivalently, it is a frame of reference in which Newton's laws of motion#Newton's first law, Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration. It has been observed that celestial objects which are far away from other objects and which are in uniform motion with respect to the Cosmic microwave background#Features, cosmic microwave background radiation maintain such uniform motion. Measureme ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Retarded Potential
In electrodynamics, the retarded potentials are the electromagnetic potentials for the electromagnetic field generated by time-varying electric current or charge distributions in the past. The fields propagate at the speed of light ''c'', so the delay of the fields connecting cause and effect at earlier and later times is an important factor: the signal takes a finite time to propagate from a point in the charge or current distribution (the point of cause) to another point in space (where the effect is measured), see figure below. In the Lorenz gauge The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: : \Box \varphi = \dfrac \,,\quad \Box \mathbf = \mu_0\mathbf where φ(r, ''t'') is the electric potential and A(r, ''t'') is the magnetic vector potential, for an arbitrary source of charge density ρ(r, ''t'') and current density J(r, ''t''), and \Box is the D'Alembert operator. Solving these gives the retarded potentials below (all ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Anthony French
Anthony Philip French (November 19, 1920 – February 3, 2017) was a British professor of physics at the Massachusetts Institute of Technology. He was born in Brighton, England. French was a graduate of Cambridge University, receiving his B.A. in 1942 and Ph.D. in 1948, both in physics. In 1942, he began working on the British effort to build an atomic bomb (codenamed Tube Alloys) at the Cavendish Laboratory. By 1944, Tube Alloys had been merged with the American Manhattan Project and he was sent to Los Alamos. When the war ended, he returned to the United Kingdom, where he spent a couple of years at the newly formed Atomic Energy Research Establishment. He later joined the faculty at Cambridge, where he conducted his research at Cavendish and became a Fellow and Director of Studies in Natural Sciences at Pembroke College, Cambridge. In 1955, French arrived at the University of South Carolina, where he was made chairman of the physics department. He left South Caroli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plenum Press
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard Feynman
Richard Phillips Feynman (; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, as well as his work in particle physics for which he proposed the parton model. For contributions to the development of quantum electrodynamics, Feynman received the Nobel Prize in Physics in 1965 jointly with Julian Schwinger and Shin'ichirō Tomonaga. Feynman developed a widely used pictorial representation scheme for the mathematical expressions describing the behavior of subatomic particles, which later became known as Feynman diagrams. During his lifetime, Feynman became one of the best-known scientists in the world. In a 1999 poll of 130 leading physicists worldwide by the British journal ''Physics World'', he was ranked the seventh-greatest physicist of all time. He assisted in the development o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Education And Training Of Electrical And Electronics Engineers
Both electrical and electronics engineers typically possess an academic degree with a major in electrical/ electronics engineering. The length of study for such a degree is usually three or four years and the completed degree may be designated as a Bachelor of Engineering, Bachelor of Science or Bachelor of Applied Science depending upon the university. Scope of undergraduate education The degree generally includes units covering physics, mathematics, project management and specific topics in electrical and electronics engineering. Initially such topics cover most, if not all, of the sub fields of electrical engineering. Students then choose to specialize in one or more sub fields towards the end of the degree. In most countries, a bachelor's degree in engineering represents the first step towards certification and the degree program itself is certified by a professional body. After completing a certified degree program the engineer must satisfy a range of requirements (including ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer Science & Business Media
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electrostatics
Electrostatics is a branch of physics that studies electric charges at rest (static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, (), was thus the source of the word 'electricity'. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law. Even though electrostatically induced forces seem to be rather weak, some electrostatic forces are relatively large. The force between an electron and a proton, which together make up a hydrogen atom, is about 36 orders of magnitude stronger than the gravitational force acting between them. There are many examples of electrostatic phenomena, from those as simple as the attraction of plastic wrap to one's hand after it is removed from a package, to the apparently spontaneous explosion of grain silos, the damage of electronic components during manufacturin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |