Coupling unification
   HOME

TheInfoList



OR:

A Grand Unified Theory (GUT) is a model in
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
in which, at high
energies In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat an ...
, the three gauge interactions of the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
comprising the electromagnetic,
weak Weak may refer to: Songs * "Weak" (AJR song), 2016 * "Weak" (Melanie C song), 2011 * "Weak" (SWV song), 1993 * "Weak" (Skunk Anansie song), 1995 * "Weak", a song by Seether from '' Seether: 2002-2013'' Television episodes * "Weak" (''Fear t ...
, and
strong Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United Sta ...
forces are merged into a single force. Although this unified force has not been directly observed, many GUT models theorize its existence. If unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the
very early universe The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with ...
in which these three fundamental interactions were not yet distinct. Experiments have confirmed that at high energy the electromagnetic interaction and weak interaction unify into a single electroweak interaction. GUT models predict that at even higher energy, the strong interaction and the electroweak interaction will unify into a single electronuclear interaction. This interaction is characterized by one larger
gauge symmetry In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups) ...
and thus several
force carrier In quantum field theory, a force carrier, also known as messenger particle or intermediate particle, is a type of particle that gives rise to forces between other particles. These particles serve as the quanta of a particular kind of physical field ...
s, but one unified
coupling constant In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two ...
. Unifying
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
with the electronuclear interaction would provide a more comprehensive theory of everything (TOE) rather than a Grand Unified Theory. Thus, GUTs are often seen as an intermediate step towards a TOE. The novel particles predicted by GUT models are expected to have extremely high masses—around the
GUT scale The grand unification energy \Lambda_, or the GUT scale, is the energy level above which, it is believed, the electromagnetic force, weak force, and strong force become equal in strength and unify to one force governed by a simple Lie group. The exa ...
of 10^ GeV (just a few orders of magnitude below the Planck scale of 10^ GeV)—and so are well beyond the reach of any foreseen particle hadron collider experiments. Therefore, the particles predicted by GUT models will be unable to be observed directly, and instead the effects of grand unification might be detected through indirect observations such as proton decay,
electric dipole moment The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The ...
s of
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s, or the properties of neutrinos. Some GUTs, such as the Pati–Salam model, predict the existence of magnetic monopoles. While GUTs might be expected to offer simplicity over the complications present in the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
, realistic models remain complicated because they need to introduce additional fields and interactions, or even additional dimensions of space, in order to reproduce observed
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
masses and mixing angles. This difficulty, in turn, may be related to an existence of
family symmetries In particle physics, the family symmetries or horizontal symmetries are various discrete, global, or local symmetries between quark-lepton families or generations. In contrast to the intrafamily or vertical symmetries (collected in the conventional ...
beyond the conventional GUT models. Due to this, and the lack of any observed effect of grand unification so far, there is no generally accepted GUT model. Models that do not unify the three interactions using one simple group as the gauge symmetry, but do so using semisimple groups, can exhibit similar properties and are sometimes referred to as Grand Unified Theories as well.


History

Historically, the first true GUT which was based on the simple Lie group , was proposed by
Howard Georgi Howard Mason Georgi III (born January 6, 1947) is an American theoretical physicist and the Mallinckrodt Professor of Physics and Harvard College Professor at Harvard University. He is also Director of Undergraduate Studies in Physics. He was Co-M ...
and Sheldon Glashow in 1974. The Georgi–Glashow model was preceded by the semisimple Lie algebra Pati–Salam model by Abdus Salam and
Jogesh Pati Jogesh C. Pati (born 1937) is an Indian American theoretical physicist at the SLAC National Accelerator Laboratory. Biography Jogesh Pati started his schooling at Guru Training School, Baripada and then admitted to M.K.C High School where he ...
also in 1974, who pioneered the idea to unify gauge interactions. The acronym GUT was first coined in 1978 by CERN researchers
John Ellis John Ellis may refer to: Academics *John Ellis (scrivener) (1698–1791), English political writer *John Ellis (naturalist) (1710–1776), English botanical illustrator *John Ellis (physicist, born 1946), British theoretical physicist at CERN * Jo ...
,
Andrzej Buras Andrzej Jerzy Buras (Polish pronunciation: ; born 26 October 1946 in Warsaw, Poland) is a Polish-born Danish theoretical physicist, professor emeritus at the Technical University Munich (TUM). Scientific career He received his master's degree ...
,
Mary K. Gaillard Mary Katharine Gaillard (born April 1, 1939) is an American theoretical physicist. Her focus is on particle physics. She is a professor of the Graduate School at the University of California, Berkeley, a member of the Berkeley Center for Theore ...
, and Dimitri Nanopoulos, however in the final version of their paper they opted for the less anatomical GUM (Grand Unification Mass). Nanopoulos later that year was the first to use the acronym in a paper.


Motivation

The ''supposition'' that the electric charges of electrons and
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s seem to cancel each other exactly to extreme precision is essential for the existence of the macroscopic world as we know it, but this important property of elementary particles is not explained in the Standard Model of particle physics. While the description of
strong Strong may refer to: Education * The Strong, an educational institution in Rochester, New York, United States * Strong Hall (Lawrence, Kansas), an administrative hall of the University of Kansas * Strong School, New Haven, Connecticut, United Sta ...
and
weak Weak may refer to: Songs * "Weak" (AJR song), 2016 * "Weak" (Melanie C song), 2011 * "Weak" (SWV song), 1993 * "Weak" (Skunk Anansie song), 1995 * "Weak", a song by Seether from '' Seether: 2002-2013'' Television episodes * "Weak" (''Fear t ...
interactions within the Standard Model is based on gauge symmetries governed by the simple symmetry groups and which allow only discrete charges, the remaining component, the weak hypercharge interaction is described by an abelian symmetry which in principle allows for arbitrary charge assignments.There are however certain constraints on the choice of particle charges from theoretical consistency, in particular anomaly cancellation. The observed charge quantization, namely the postulation that all known
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s carry electric charges which are exact multiples of one-third of the "elementary" charge, has led to the idea that hypercharge interactions and possibly the strong and weak interactions might be embedded in one Grand Unified interaction described by a single, larger simple symmetry group containing the Standard Model. This would automatically predict the quantized nature and values of all elementary particle charges. Since this also results in a prediction for the relative strengths of the fundamental interactions which we observe, in particular, the
weak mixing angle The weak mixing angle or Weinberg angle is a parameter in the Weinberg– Salam theory of the electroweak interaction, part of the Standard Model of particle physics, and is usually denoted as . It is the angle by which spontaneous symmetry bre ...
, grand unification ideally reduces the number of independent input parameters but is also constrained by observations. Grand unification is reminiscent of the unification of electric and magnetic forces by Maxwell's field theory of electromagnetism in the 19th century, but its physical implications and mathematical structure are qualitatively different.


Unification of matter particles


SU(5)

is the simplest GUT. The smallest simple Lie group which contains the
standard model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
, and upon which the first Grand Unified Theory was based, is : \rm SU(5) \supset SU(3)\times SU(2)\times U(1). Such group symmetries allow the reinterpretation of several known particles, including the photon, W and Z bosons, and gluon, as different states of a single particle field. However, it is not obvious that the simplest possible choices for the extended "Grand Unified" symmetry should yield the correct inventory of elementary particles. The fact that all currently known matter particles fit perfectly into three copies of the smallest group representations of and immediately carry the correct observed charges, is one of the first and most important reasons why people believe that a Grand Unified Theory might actually be realized in nature. The two smallest irreducible representations of are (the defining representation) and . In the standard assignment, the contains the charge conjugates of the right-handed down-type quark color
triplet A triplet is a set of three items, which may be in a specific order, or unordered. It may refer to: Science * A series of three nucleotide bases forming an element of the Genetic code * J-coupling as part of Nuclear magnetic resonance spectrosc ...
and a left-handed
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
isospin
doublet Doublet is a word derived from the Latin ''duplus'', "twofold, twice as much",