Technicolor (physics)
   HOME
*





Technicolor (physics)
Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name. Instead of introducing elementary Higgs bosons to explain observed phenomena, technicolor models were introduced to dynamically generate masses for the W and Z bosons through new gauge interactions. Although asymptotically free at very high energies, these interactions must become strong and confining (and hence unobservable) at lower energies that have been experimentally probed. This dynamical approach is natural and avoids issues of Quantum triviality and the hierarchy problem of the Standard Model. However, since the Higgs boson discovery at the CERN LHC in 2012, the original models are largely ruled out. Nonetheless, it remains a possibilit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infrared Fixed Point
In physics, an infrared fixed point is a set of coupling constants, or other parameters, that evolve from initial values at very high energies (short distance) to fixed stable values, usually predictable, at low energies (large distance). This usually involves the use of the renormalization group, which specifically details the way parameters in a physical system (a quantum field theory) depend on the energy scale being probed. Conversely, if the length-scale decreases and the physical parameters approach fixed values, then we have ultraviolet fixed points. The fixed points are generally independent of the initial values of the parameters over a large range of the initial values. This is known as universality. Statistical physics In the statistical physics of second order phase transitions, the physical system approaches an infrared fixed point that is independent of the initial short distance dynamics that defines the material. This determines the properties of the phase tran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Top Quark
The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs Boson. This coupling y_ is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab. Like all other quarks, the top quark is a fermion with spin and participates in all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. It has an electric charge of +  ''e''. It has a mass of , which is close to the rhenium atom mass. The antiparticle of the top quark is the top antiquark (symbol: , sometimes called ''antitop quark'' or simply ''antitop''), which differs from it only in that some of its properties have equal magnitude but opposite sign. The top quark interacts with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phenomenology (particle Physics)
In physics, phenomenology is the application of theoretical physics to experimental data by making quantitative predictions based upon known theories. It is related to the philosophical notion of the same name in that these predictions describe anticipated behaviors for the phenomena in reality. Phenomenology stands in contrast with experimentation in the scientific method, in which the goal of the experiment is to test a scientific hypothesis instead of making predictions. Phenomenology is commonly applied to the field of particle physics, where it forms a bridge between the mathematical models of theoretical physics (such as quantum field theories and theories of the structure of space-time) and the results of the high-energy particle experiments. It is sometimes used in other fields such as in condensed matter physics and plasma physics, when there are no existing theories for the observed experimental data. Applications in particle physics Standard Model consequences With ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electroweak Scale
In particle physics, the electroweak scale, also known as the Fermi scale, is the energy scale around 246 GeV, a typical energy of processes described by the electroweak theory. The particular number 246 GeV is taken to be the vacuum expectation value v = (G_F \sqrt)^ of the Higgs field (where G_F is the Fermi coupling constant). In some cases the term ''electroweak scale'' is used to refer to the temperature of electroweak symmetry breaking, 159.5±1.5 GeV . In other cases, the term is used more loosely to refer to energies in a broad range around 102 - 103 GeV. This is within reach of the Large Hadron Collider (LHC), which is designed for about 104 GeV in proton–proton collisions. Interactions may have been above this scale during the electroweak epoch. In the unextended Standard Model, the transition from the electroweak epoch was not a first or a second order phase transition but a continuous crossover, preventing any baryogenesis. However many extensions to the standa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fine-tuning
In theoretical physics, fine-tuning is the process in which parameters of a model must be adjusted very precisely in order to fit with certain observations. This had led to the discovery that the fundamental constants and quantities fall into such an extraordinarily precise range that if it did not, the origin and evolution of conscious agents in the universe would not be permitted. Theories requiring fine-tuning are regarded as problematic in the absence of a known mechanism to explain why the parameters happen to have precisely the observed values that they return. The heuristic rule that parameters in a fundamental physical theory should not be too fine-tuned is called Naturalness (physics), naturalness. Background The idea that naturalness will explain fine tuning was brought into question by Nima Arkani-Hamed, a theoretical physicist, in his talk "Why is there a Macroscopic Universe?", a lecture from the mini-series "Multiverse & Fine Tuning" from the "Philosophy of Cosmo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electroweak
In particle physics, the electroweak interaction or electroweak force is the unified field theory, unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the electroweak scale, unification energy, on the order of 246 GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 Kelvin, K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spontaneous Symmetry Breaking
Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry. Overview By definition, spontaneous symmetry breaking requires the existence of physical laws (e.g. quantum mechanics) which are invariant under a symmetry transformation (such as translation or rotation), so that any pair of outcomes differing only by that transformation have the same probability distribution. For example if measurements of an observable at any two different positions have the same probability distribution, the observable has translational symmetry. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated huge successes in providing experimental predictions, it leaves some physics beyond the standard m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electroweak Interaction
In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV,The particular number 246 GeV is taken to be the vacuum expectation value v = (G_\text \sqrt)^ of the Higgs field (where G_\text is the Fermi coupling constant). they would merge into a single force. Thus, if the temperature is high enough – approximately 1015  K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the unive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topcolor
Topcolor is a model in theoretical physics, of dynamical electroweak symmetry breaking in which the top quark and anti-top quark form a composite Higgs boson by a new force arising from massive "top gluons". The solution to composite Higgs models was actually anticipated in 1981, and found to be the Infrared fixed point for the top quark mass. Analogy with known physics The composite Higgs boson made from a bound pair of top-anti-top quarks is analogous to the phenomenon of superconductivity, where Cooper pairs are formed by the exchange of phonons. The pairing dynamics and its solution was treated in the Bardeen-Hill-Lindner model. The original topcolor naturally involved an extension of the standard model color gauge group to a product group SU(3)×SU(3)×SU(3)×... One of the gauge groups contains the top and bottom quarks, and has a sufficiently large coupling constant to cause the condensate to form. The topcolor model anticipates the idea of dimensional deconstruction and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Hadron Collider
The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel in circumference and as deep as beneath the France–Switzerland border near Geneva. The first collisions were achieved in 2010 at an energy of 3.5 teraelectronvolts (TeV) per beam, about four times the previous world record. After upgrades it reached 6.5 TeV per beam (13 TeV total collision energy). At the end of 2018, it was shut down for three years for further upgrades. The collider has four crossing points where the accelerated particles collide. Seven detectors, each designed to detect different phenomena, are positioned around the crossing points. The LHC primarily collides proton beams, but it can also accelerate beams of heavy ion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]