Colonization of Callisto
   HOME

TheInfoList



OR:

Callisto (), or Jupiter IV, is the second-largest
moon of Jupiter There are 82 known Natural satellite, moons of Jupiter, not counting a number of moonlets likely shed from the inner moons. All together, they form a satellite system (astronomy), satellite system which is called the Jovian system. The most mas ...
, after Ganymede. It is the third-largest moon in the Solar System after Ganymede and
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
's largest moon
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
, and the largest object in the Solar System that may not be properly differentiated. Callisto was discovered in 1610 by Galileo Galilei. With a diameter of , Callisto is about 99% the diameter of the planet
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
, but only about a third of its mass. It is the fourth
Galilean moon The Galilean moons (), or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They were first seen by Galileo Galilei in December 1609 or January 1610, and recognized by him as satellites of Jupiter ...
of Jupiter by distance, with an orbital radius of about . It is not in an orbital resonance like the three other Galilean satellites— Io,
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
, and Ganymede—and is thus not appreciably tidally heated. Callisto's rotation is
tidally locked Tidal locking between a pair of co-orbiting astronomical body, astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where ...
to its orbit around Jupiter, so that the same hemisphere always faces inward. Because of this, there is a sub-Jovian point on Callisto's surface, from which Jupiter would appear to hang directly overhead. It is less affected by Jupiter's
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
than the other
inner satellite In astronomy, an inner moon or inner natural satellite is a natural satellite following a prograde, low-inclination orbit inwards of the large satellites of the parent planet. They are generally thought to have been formed ''in situ'' at the same ...
s because of its more remote orbit, located just outside Jupiter's main radiation belt. Callisto is composed of approximately equal amounts of
rock Rock most often refers to: * Rock (geology), a naturally occurring solid aggregate of minerals or mineraloids * Rock music, a genre of popular music Rock or Rocks may also refer to: Places United Kingdom * Rock, Caerphilly, a location in Wales ...
and ices, with a density of about , the lowest density and surface gravity of Jupiter's major moons. Compounds detected spectroscopically on the surface include water ice, carbon dioxide,
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
s, and organic compounds. Investigation by the ''
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
'' spacecraft revealed that Callisto may have a small
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
core and possibly a subsurface ocean of liquid water at depths greater than . The surface of Callisto is the oldest and most heavily cratered in the Solar System. Its surface is completely covered with impact craters. It does not show any signatures of
subsurface In geology, bedrock is solid rock that lies under loose material (regolith) within the crust of Earth or another terrestrial planet. Definition Bedrock is the solid rock that underlies looser surface material. An exposed portion of bedro ...
processes such as plate tectonics or volcanism, with no signs that geological activity in general has ever occurred, and is thought to have evolved predominantly under the influence of impacts. Prominent surface features include multi-ring structures, variously shaped impact craters, and chains of craters (''catenae'') and associated scarps, ridges and deposits. At a small scale, the surface is varied and made up of small, sparkly frost deposits at the tips of high spots, surrounded by a low-lying, smooth blanket of dark material. This is thought to result from the
sublimation Sublimation or sublimate may refer to: * ''Sublimation'' (album), by Canvas Solaris, 2004 * Sublimation (phase transition), directly from the solid to the gas phase * Sublimation (psychology), a mature type of defense mechanism * Sublimate of mer ...
-driven degradation of small
landform A landform is a natural or anthropogenic land feature on the solid surface of the Earth or other planetary body. Landforms together make up a given terrain, and their arrangement in the landscape is known as topography. Landforms include hills, ...
s, which is supported by the general deficit of small impact craters and the presence of numerous small knobs, considered to be their remnants. The absolute ages of the landforms are not known. Callisto is surrounded by an extremely thin
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
composed of carbon dioxide and probably
molecular oxygen There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are: *A ...
, as well as by a rather intense
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
. Callisto is thought to have formed by slow
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
from the disk of the gas and dust that surrounded Jupiter after its formation. Callisto's gradual accretion and the lack of tidal heating meant that not enough heat was available for rapid differentiation. The slow convection in the interior of Callisto, which commenced soon after formation, led to partial differentiation and possibly to the formation of a subsurface ocean at a depth of 100–150 km and a small, rocky core. The likely presence of an ocean within Callisto leaves open the possibility that it could harbor life. However, conditions are thought to be less favorable than on nearby
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
. Various space probes from '' Pioneers 10'' and '' 11'' to ''
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
'' and '' Cassini'' have studied Callisto. Because of its low
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
levels, Callisto has long been considered the most suitable place for a human base for future exploration of the Jovian system.


History


Discovery

Callisto was discovered by Galileo in January 1610, along with the three other large Jovian moons— Ganymede, Io, and
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
.


Name

Callisto is named after one of Zeus's many lovers or other sexual partners in Greek mythology. Callisto was a nymph (or, according to some sources, the daughter of Lycaon) who was associated with the goddess of the hunt, Artemis. The name was suggested by Simon Marius soon after Callisto's discovery. Marius attributed the suggestion to
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
. However, the names of the Galilean satellites fell into disfavor for a considerable time, and were not revived in common use until the mid-20th century. In much of the earlier astronomical literature, Callisto is referred to by its Roman numeral designation, a system introduced by Galileo, as or as "the fourth satellite of Jupiter". There's no established English adjectival form of the name. The adjectival form of Greek Καλλιστῴ ''Kallistōi'' is Καλλιστῴος ''Kallistōi-os'', from which one might expect Latin ''Callistōius'' and English *Callistóian (with 5 syllables), parallel to Sapphóian (4 syllables) for '' Sapphōi'' and Letóian for '' Lētōi''. However, the iota subscript is often omitted from such Greek names (cf. ''Inóan'' from '' Īnōi'' and ''Argóan'' from '' Argōi''), and indeed the analogous form Callistoan is found. In Virgil, a second oblique stem appears in Latin: ''Callistōn-,'' but the corresponding Callistonian has rarely appeared in English. One also sees ''ad hoc'' forms, such as Callistan, Callistian and Callistean.


Orbit and rotation

Callisto is the outermost of the four Galilean moons of Jupiter. It orbits at a distance of approximately 1 880 000 km (26.3 times the 71 492 km radius of Jupiter itself). This is significantly larger than the orbital radius—1 070 000 km—of the next-closest Galilean satellite, Ganymede. As a result of this relatively distant orbit, Callisto does not participate in the mean-motion resonance—in which the three inner Galilean satellites are locked—and probably never has. Callisto is expected to be captured into the resonance in about 1.5 billion years, completing the 1:2:4:8 chain. Like most other regular planetary moons, Callisto's rotation is locked to be synchronous with its orbit. The length of Callisto's day, simultaneously its orbital period, is about 16.7 Earth days. Its orbit is very slightly eccentric and inclined to the Jovian
equator The equator is a circle of latitude, about in circumference, that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, halfway between the North and South poles. The term can als ...
, with the eccentricity and inclination changing
quasi-periodic Quasiperiodicity is the property of a system that displays irregular periodicity. Periodic behavior is defined as recurring at regular intervals, such as "every 24 hours". Quasiperiodic behavior is a pattern of recurrence with a component of unpr ...
ally due to solar and planetary gravitational perturbations on a timescale of centuries. The ranges of change are 0.0072–0.0076 and 0.20–0.60°, respectively. These orbital variations cause the axial tilt (the angle between rotational and orbital axes) to vary between 0.4 and 1.6°. The dynamical isolation of Callisto means that it has never been appreciably tidally heated, which has important consequences for its internal structure and evolution. Its distance from Jupiter also means that the charged-particle
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
from Jupiter's
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior dynam ...
at its surface is relatively low—about 300 times lower than, for example, that at
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
. Hence, unlike the other Galilean moons, charged-particle irradiation has had a relatively minor effect on Callisto's surface. The radiation level at Callisto's surface is equivalent to a dose of about 0.01
rem Rem or REM may refer to: Music * R.E.M., an American rock band * ''R.E.M.'' (EP), by Green * "R.E.M." (song), by Ariana Grande Organizations * La République En Marche!, a French centrist political party * Reichserziehungsministerium, in Nazi G ...
(0.1
mSv mSv or MSV may refer to: * Maize streak virus, a plant disease * Medium-speed vehicle, US category * Medium Systems Vehicle, a class of fictional artificially intelligent starship in The Culture universe of late Scottish author Iain Banks * Mill ...
) per day, which is over ten times higher than Earth's average background radiation.


Physical characteristics


Composition

The average density of Callisto, 1.83 g/cm3, suggests a composition of approximately equal parts of rocky material and water ice, with some additional volatile ices such as ammonia. The mass fraction of ices is 49–55%. The exact composition of Callisto's
rock Rock most often refers to: * Rock (geology), a naturally occurring solid aggregate of minerals or mineraloids * Rock music, a genre of popular music Rock or Rocks may also refer to: Places United Kingdom * Rock, Caerphilly, a location in Wales ...
component is not known, but is probably close to the composition of L/LL type ordinary chondrites, which are characterized by less total iron, less metallic iron and more
iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of whic ...
than H chondrites. The weight ratio of iron to silicon is 0.9–1.3 in Callisto, whereas the solar ratio is around 1:8. Callisto's surface has an albedo of about 20%. Its surface composition is thought to be broadly similar to its composition as a whole. Near-infrared
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
has revealed the presence of water ice
absorption band According to quantum mechanics, atoms and molecules can only hold certain defined quantities of energy, or exist in specific states. When such quanta of electromagnetic radiation are emitted or absorbed by an atom or molecule, energy of the ...
s at wavelengths of 1.04, 1.25, 1.5, 2.0 and 3.0 micrometers. Water ice seems to be ubiquitous on the surface of Callisto, with a mass fraction of 25–50%. The analysis of high-resolution, near-infrared and UV spectra obtained by the ''
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
'' spacecraft and from the ground has revealed various non-ice materials: magnesium- and iron-bearing hydrated silicates, carbon dioxide,
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activ ...
, and possibly ammonia and various organic compounds. Spectral data indicate that Callisto's surface is extremely heterogeneous at the small scale. Small, bright patches of pure water ice are intermixed with patches of a rock–ice mixture and extended dark areas made of a non-ice material. The Callistoan surface is asymmetric: the leading hemisphereThe leading hemisphere is the hemisphere facing the direction of the orbital motion; the trailing hemisphere faces the reverse direction. is darker than the trailing one. This is different from other Galilean satellites, where the reverse is true. The trailing hemisphere of Callisto appears to be enriched in carbon dioxide, whereas the leading hemisphere has more
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activ ...
. Many fresh impact craters like Lofn also show enrichment in carbon dioxide. Overall, the chemical composition of the surface, especially in the dark areas, may be close to that seen on
D-type asteroid D-type asteroids have a very low albedo and a featureless reddish Asteroid spectral types, spectrum. It has been suggested that they have a composition of organic-rich silicates, carbon and anhydrous silicates, possibly with water ice in their inte ...
s, whose surfaces are made of carbonaceous material.


Internal structure

Callisto's battered surface lies on top of a cold, stiff, and icy
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust (geology), crust and the portion of the upper mantle (geology), mantle that behaves elastically on time sca ...
that is between 80 and 150 km thick. A salty ocean 150–200 km deep may lie beneath the crust, indicated by studies of the
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s around Jupiter and its moons. It was found that Callisto responds to Jupiter's varying background magnetic field like a perfectly
conducting Conducting is the art of directing a musical performance, such as an orchestral or choral concert. It has been defined as "the art of directing the simultaneous performance of several players or singers by the use of gesture." The primary duti ...
sphere; that is, the field cannot penetrate inside Callisto, suggesting a layer of highly conductive fluid within it with a thickness of at least 10 km. The existence of an ocean is more likely if water contains a small amount of ammonia or other antifreeze, up to 5% by weight. In this case the water+ice layer can be as thick as 250–300 km. Failing an ocean, the icy lithosphere may be somewhat thicker, up to about 300 km. Beneath the lithosphere and putative ocean, Callisto's interior appears to be neither entirely uniform nor particularly variable. ''
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
'' orbiter data (especially the dimensionless
moment of inertia The moment of inertia, otherwise known as the mass moment of inertia, angular mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceler ...
The dimensionless moment of inertia referred to is I / (mr^2), where is the moment of inertia, the mass, and the maximal radius. It is 0.4 for a homogenous spherical body, but less than 0.4 if density increases with depth.—0.3549 ± 0.0042—determined during close flybys) suggest that, if Callisto is in hydrostatic equilibrium, its interior is composed of compressed
rocks In geology, rock (or stone) is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition, and the way in which it is formed. Rocks form the Earth's ...
and ices, with the amount of rock increasing with depth due to partial settling of its constituents. In other words, Callisto may be only partially differentiated. The density and moment of inertia for an equilibrium Callisto are compatible with the existence of a small
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
core in the center of Callisto. The radius of any such core cannot exceed 600 km, and the density may lie between 3.1 and 3.6 g/cm3. In this case, Callisto's interior would be in stark contrast to that of Ganymede, which appears to be fully differentiated. However, a 2011 reanalysis of Galileo data suggests that Callisto is not in hydrostatic equilibrium; its S22 coefficient from gravity data is an anomalous 10% of its C22 value, which is not consistent with a body in hydrostatic equilibrium and thus significantly increases the error bars on Callisto's moment of inertia. Further, an undifferentiated Callisto is inconsistent with the presence of a substantial internal ocean as inferred by magnetic data, and it would be difficult for an object as large as Callisto to fail to differentiate at any point. In that case, the gravity data may be more consistent with a more thoroughly differentiated Callisto with a hydrated silicate core.


Surface features

The ancient surface of Callisto is one of the most heavily cratered in the Solar System. In fact, the
crater Crater may refer to: Landforms *Impact crater, a depression caused by two celestial bodies impacting each other, such as a meteorite hitting a planet *Explosion crater, a hole formed in the ground produced by an explosion near or below the surfac ...
density is close to saturation: any new crater will tend to erase an older one. The large-scale geology is relatively simple; there are no large mountains on Callisto, volcanoes or other
endogenic Endogenous substances and processes are those that originate from within a living system such as an organism, tissue, or cell. In contrast, exogenous substances and processes are those that originate from outside of an organism. For example, es ...
tectonic features. The impact craters and multi-ring structures—together with associated
fractures Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displa ...
, scarps and deposits—are the only large features to be found on the surface. Callisto's surface can be divided into several geologically different parts: cratered plains, light plains, bright and dark smooth plains, and various units associated with particular multi-ring structures and impact craters. The cratered plains constitute most of the surface area and represent the ancient lithosphere, a mixture of ice and rocky material. The light plains include bright impact craters like
Burr Burr may refer to: Places * Burr (crater), on the Jovian moon Callisto *Burr, Minnesota, an unincorporated community, United States * Burr, Missouri, an unincorporated community, United States *Burr, Nebraska, a village, United States * Burr, Sa ...
and Lofn, as well as the effaced remnants of old large craters called palimpsests, the central parts of multi-ring structures, and isolated patches in the cratered plains. These light plains are thought to be icy impact deposits. The bright, smooth plains constitute a small fraction of Callisto's surface and are found in the ridge and
trough Trough may refer to: In science * Trough (geology), a long depression less steep than a trench * Trough (meteorology), an elongated region of low atmospheric pressure * Trough (physics), the lowest point on a wave * Trough level (medicine), the l ...
zones of the Valhalla and Asgard formations and as isolated spots in the cratered plains. They were thought to be connected with
endogenic Endogenous substances and processes are those that originate from within a living system such as an organism, tissue, or cell. In contrast, exogenous substances and processes are those that originate from outside of an organism. For example, es ...
activity, but the high-resolution ''Galileo'' images showed that the bright, smooth plains correlate with heavily fractured and knobby terrain and do not show any signs of resurfacing. The ''Galileo'' images also revealed small, dark, smooth areas with overall coverage less than 10,000 km2, which appear to embayTo ''embay'' means to shut in, or shelter, as in a bay. the surrounding terrain. They are possible
cryovolcanic A cryovolcano (sometimes informally called an ice volcano) is a type of volcano that erupts volatiles such as water, ammonia or methane into an extremely cold environment that is at or below their freezing point. The process of formation is known ...
deposits. Both the light and the various smooth plains are somewhat younger and less cratered than the background cratered plains. Impact crater diameters seen range from 0.1 km—a limit defined by the imaging resolution—to over 100 km, not counting the multi-ring structures. Small craters, with diameters less than 5 km, have simple bowl or flat-floored shapes. Those 5–40 km across usually have a central peak. Larger impact features, with diameters in the range 25–100 km, have central pits instead of peaks, such as Tindr crater. The largest craters with diameters over 60 km can have central domes, which are thought to result from central tectonic uplift after an impact; examples include Doh and Hár craters. A small number of very large—more than 100 km in diameter—and bright impact craters show anomalous dome geometry. These are unusually shallow and may be a transitional
landform A landform is a natural or anthropogenic land feature on the solid surface of the Earth or other planetary body. Landforms together make up a given terrain, and their arrangement in the landscape is known as topography. Landforms include hills, ...
to the multi-ring structures, as with the Lofn impact feature. Callisto's craters are generally shallower than those on the Moon. The largest impact features on Callisto's surface are multi-ring basins. Two are enormous. Valhalla is the largest, with a bright central region 600 kilometers in diameter, and rings extending as far as 1,800 kilometers from the center (see figure). The second largest is Asgard, measuring about 1,600 kilometers in diameter. Multi-ring structures probably originated as a result of a post-impact
concentric In geometry, two or more objects are said to be concentric, coaxal, or coaxial when they share the same center or axis. Circles, regular polygons and regular polyhedra, and spheres may be concentric to one another (sharing the same center point ...
fracturing of the lithosphere lying on a layer of soft or liquid material, possibly an ocean. The catenae—for example
Gomul Catena Gomul Catena is a chain of craters on Jupiter's moon, Callisto. It is situated in the northern part of Valhalla In Norse mythology Valhalla (;) is the anglicised name for non, Valhǫll ("hall of the slain").Orchard (1997:171–172) It is de ...
—are long chains of impact craters lined up in straight lines across the surface. They were probably created by objects that were tidally disrupted as they passed close to Jupiter prior to the impact on Callisto, or by very oblique impacts. A historical example of a disruption was
Comet Shoemaker-Levy 9 A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ar ...
. As mentioned above, small patches of pure water ice with an albedo as high as 80% are found on the surface of Callisto, surrounded by much darker material. High-resolution ''
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
'' images showed the bright patches to be predominately located on elevated surface features: crater rims, scarps, ridges and knobs. They are likely to be thin water frost deposits. Dark material usually lies in the lowlands surrounding and mantling bright features and appears to be smooth. It often forms patches up to 5 km across within the crater floors and in the intercrater depressions. On a sub-kilometer scale the surface of Callisto is more degraded than the surfaces of other icy
Galilean moons The Galilean moons (), or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They were first seen by Galileo Galilei in December 1609 or January 1610, and recognized by him as satellites of Jupiter ...
. Typically there is a deficit of small impact craters with diameters less than 1 km as compared with, for instance, the dark plains on Ganymede. Instead of small craters, the almost ubiquitous surface features are small knobs and pits. The knobs are thought to represent remnants of crater rims degraded by an as-yet uncertain process. The most likely candidate process is the slow
sublimation Sublimation or sublimate may refer to: * ''Sublimation'' (album), by Canvas Solaris, 2004 * Sublimation (phase transition), directly from the solid to the gas phase * Sublimation (psychology), a mature type of defense mechanism * Sublimate of mer ...
of ice, which is enabled by a temperature of up to 165  K, reached at a subsolar point. Such sublimation of water or other
volatiles Volatiles are the group of chemical elements and chemical compounds that can be readily vaporized. In contrast with volatiles, elements and compounds that are not readily vaporized are known as refractory substances. On planet Earth, the term ' ...
from the dirty ice that is the
bedrock In geology, bedrock is solid Rock (geology), rock that lies under loose material (regolith) within the crust (geology), crust of Earth or another terrestrial planet. Definition Bedrock is the solid rock that underlies looser surface mater ...
causes its decomposition. The non-ice remnants form debris avalanches descending from the slopes of the crater walls. Such avalanches are often observed near and inside impact craters and termed "debris aprons". Sometimes crater walls are cut by sinuous valley-like incisions called "gullies", which resemble certain Martian surface features. In the ice sublimation hypothesis, the low-lying dark material is interpreted as a blanket of primarily non-ice debris, which originated from the degraded rims of craters and has covered a predominantly icy bedrock. The relative ages of the different surface units on Callisto can be determined from the density of impact craters on them. The older the surface, the denser the crater population. Absolute dating has not been carried out, but based on theoretical considerations, the cratered plains are thought to be ~4.5  billion years old, dating back almost to the formation of the Solar System. The ages of multi-ring structures and impact craters depend on chosen background cratering rates and are estimated by different authors to vary between 1 and 4 billion years.


Atmosphere and ionosphere

Callisto has a very tenuous atmosphere composed of carbon dioxide. It was detected by the ''Galileo'' Near Infrared Mapping Spectrometer (NIMS) from its absorption feature near the wavelength 4.2  micrometers. The surface pressure is estimated to be 7.5 pico
bar Bar or BAR may refer to: Food and drink * Bar (establishment), selling alcoholic beverages * Candy bar * Chocolate bar Science and technology * Bar (river morphology), a deposit of sediment * Bar (tropical cyclone), a layer of cloud * Bar (u ...
(0.75 μPa) and particle density 4 cm−3. Because such a thin atmosphere would be lost in only about 4 days ''(see
atmospheric escape Atmospheric escape is the loss of planetary atmospheric gases to outer space. A number of different mechanisms can be responsible for atmospheric escape; these processes can be divided into thermal escape, non-thermal (or suprathermal) escape, and ...
)'', it must be constantly replenished, possibly by slow sublimation of carbon dioxide ice from Callisto's icy crust, which would be compatible with the sublimation–degradation hypothesis for the formation of the surface knobs. Callisto's ionosphere was first detected during ''Galileo'' flybys; its high electron density of 7–17 cm−3 cannot be explained by the photoionization of the atmospheric carbon dioxide alone. Hence, it is suspected that the atmosphere of Callisto is actually dominated by
molecular oxygen There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are: *A ...
(in amounts 10–100 times greater than ). However, oxygen has not yet been directly detected in the atmosphere of Callisto. Observations with the Hubble Space Telescope (HST) placed an upper limit on its possible concentration in the atmosphere, based on lack of detection, which is still compatible with the ionospheric measurements. At the same time, HST was able to detect condensed oxygen trapped on the surface of Callisto. Atomic hydrogen has also been detected in Callisto's atmosphere via recent analysis of 2001 Hubble Space Telescope data. Spectral images taken on 15 and 24 December 2001 were re-examined, revealing a faint signal of scattered light that indicates a hydrogen corona. The observed brightness from the scattered sunlight in Callisto's hydrogen corona is approximately two times larger when the leading hemisphere is observed. This asymmetry may originate from a different hydrogen abundance in both leading and trailing hemispheres. However, this hemispheric difference in Callisto's hydrogen corona brightness is likely to originate from the extinction of the signal in the Earth's
geocorona The geocorona is the luminous part of the outermost region of the Earth's atmosphere, the exosphere. It is seen primarily via far-ultraviolet light (Lyman-alpha) from the Sun that is scattered from neutral hydrogen. It extends to at minimum 15.5 ...
, which is greater when the trailing hemisphere is observed. In recent years, attempts have been made to model Callisto’s atmosphere to gain better understanding of impact of collisional molecular interactions. The modelling of Callisto’s atmosphere consisted of a kinectic method to simulate the collisions that take place between the constituent elements of the moon’s atmosphere. Supported by NASA Goddard Space Flight Center’s Solar System Exploration Division, a team of researchers at the Center for Space Science at NYU Abu Dhabi simulated Callisto’s environments on a single component and multi-component basis of radiolytic volatile compounds. The constituent elements considered during the simulation are those previously mentioned and observed in Callisto’s atmosphere by the Hubble Space Telescope: carbon dioxide, molecular oxygen, and molecular hydrogen. Within the molecular kinetics model used for simulation, the seemingly high atmospheric density of Callisto can be described by the thermal accommodation and desorption of the compounds listed above. This thermal desorption is proposed to be a product of solar exposure, with high variation in temperature observed during the day and night cycle of the prospective moon. By using the direct simulation Monte Carlo (DSMC) method, energy exchange between dynamic molecular gas is evaluated with computational particle physics. Due to the transition from collisional to collision-less interactions, the DSMC method can describe Callisto’s atmosphere with relative accuracy. Each particle of the radiolytic volatiles were evaluated with factors such as initial position, velocity, and internal energy in mind. Given that the method is transient by nature, atmospheric collisions and thermal desorption take effect until each radiolytic volatile compound exhibits steady state properties at the macroscopic level. Radiative heating and cooling of the atmosphere is evaluated at noon and midnight, times that describe when the respective heat transfer are at the maximum for each end of the scale. It is important to note that these simulations are performed under the assumption that the carbon dioxide, oxygen, and hydrogen found in Callisto’s atmosphere thermally desorb into the moon’s regolith, and all thermal dynamics shown are only represented by molecular kinetic interaction. In an evaluation of the data presented throughout the simulation, the density of Callisto’s atmosphere can be described by the trapping of hydrogen gas by way of molecular interaction with the heavier gases, namely carbon dioxide and oxygen. The three radiolytic volatiles are presumed to be present throughout the moon’s surface and are expelled by means of thermal excitation. Once the compounds are heated, they begin to radiate outward from the surface of the moon. Due to hydrogen’s lighter nature, it is observed that it is the primary constituent involved in molecular collision, attempting to escape through the macroscopic cracks between the heavier constituents. This simulation provides closer insight into how these kinetic interactions between molecules influence the excitation of each constituent and how it affects Callisto’s atmosphere. Although the simulations are limiting in terms of variables considered, it is concluded that the molecular kinetics model used provides simulated densities that correlate to thresholds expected by means of experimental detection.


Origin and evolution

The partial differentiation of Callisto (inferred e.g. from moment of inertia measurements) means that it has never been heated enough to melt its ice component. Therefore, the most favorable model of its formation is a slow
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
in the low-density Jovian subnebula—a disk of the gas and dust that existed around Jupiter after its formation. Such a prolonged accretion stage would allow cooling to largely keep up with the heat accumulation caused by impacts, radioactive decay and contraction, thereby preventing melting and fast differentiation. The allowable timescale of formation of Callisto lies then in the range 0.1 million–10 million years. The further evolution of Callisto after
accretion Accretion may refer to: Science * Accretion (astrophysics), the formation of planets and other bodies by collection of material through gravity * Accretion (meteorology), the process by which water vapor in clouds forms water droplets around nucl ...
was determined by the balance of the radioactive heating, cooling through
thermal conduction Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its ''thermal conductivity'', and is denoted . Heat spontaneously flows along a tem ...
near the surface, and solid state or subsolidus convection in the interior. Details of the subsolidus convection in the ice is the main source of uncertainty in the models of all
icy moon Icy commonly refers to conditions involving ice, a frozen state, usually referring to frozen water. Icy or Icey may also refer to: People * Icy Spicy Leoncie, an Icelandic-Indian musician Arts, entertainment, and media Music * ICY (band), a voca ...
s. It is known to develop when the temperature is sufficiently close to the melting point, due to the temperature dependence of ice viscosity. Subsolidus convection in icy bodies is a slow process with ice motions of the order of 1 centimeter per year, but is, in fact, a very effective cooling mechanism on long timescales. It is thought to proceed in the so-called stagnant lid regime, where a stiff, cold outer layer of Callisto conducts heat without convection, whereas the ice beneath it convects in the subsolidus regime. For Callisto, the outer conductive layer corresponds to the cold and rigid
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust (geology), crust and the portion of the upper mantle (geology), mantle that behaves elastically on time sca ...
with a thickness of about 100 km. Its presence would explain the lack of any signs of the
endogenic Endogenous substances and processes are those that originate from within a living system such as an organism, tissue, or cell. In contrast, exogenous substances and processes are those that originate from outside of an organism. For example, es ...
activity on the Callistoan surface. The convection in the interior parts of Callisto may be layered, because under the high pressures found there, water ice exists in different crystalline phases beginning from the ice I on the surface to ice VII in the center. The early onset of subsolidus convection in the Callistoan interior could have prevented large-scale ice melting and any resulting differentiation that would have otherwise formed a large rocky core and icy
mantle A mantle is a piece of clothing, a type of cloak. Several other meanings are derived from that. Mantle may refer to: *Mantle (clothing), a cloak-like garment worn mainly by women as fashionable outerwear **Mantle (vesture), an Eastern Orthodox ve ...
. Due to the convection process, however, very slow and partial separation and differentiation of rocks and ices inside Callisto has been proceeding on timescales of billions of years and may be continuing to this day. The current understanding of the evolution of Callisto allows for the existence of a layer or "ocean" of liquid water in its interior. This is connected with the anomalous behavior of ice I phase's melting temperature, which decreases with pressure, achieving temperatures as low as 251 K at 2,070 bar (207  MPa). In all realistic models of Callisto the temperature in the layer between 100 and 200 km in depth is very close to, or exceeds slightly, this anomalous melting temperature. The presence of even small amounts of ammonia—about 1–2% by weight—almost guarantees the liquid's existence because ammonia would lower the melting temperature even further. Although Callisto is very similar in bulk properties to Ganymede, it apparently had a much simpler geological history. The surface appears to have been shaped mainly by impacts and other
exogenic In a variety of contexts, exogeny or exogeneity () is the fact of an action or object originating externally. It contrasts with endogeneity or endogeny, the fact of being influenced within a system. Economics In an economic model, an exogeno ...
forces. Unlike neighboring Ganymede with its grooved terrain, there is little evidence of tectonic activity. Explanations that have been proposed for the contrasts in internal heating and consequent differentiation and geologic activity between Callisto and Ganymede include differences in formation conditions, the greater tidal heating experienced by Ganymede, and the more numerous and energetic impacts that would have been suffered by Ganymede during the Late Heavy Bombardment. The relatively simple geological history of Callisto provides planetary scientists with a reference point for comparison with other more active and complex worlds.


Habitability

It is speculated that there could be life in Callisto's subsurface ocean. Like
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
and Ganymede, as well as
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
's moons Enceladus,
Dione Dione may refer to: Astronomy *106 Dione, a large main belt asteroid *Dione (moon), a moon of Saturn *Helene (moon), a moon of Saturn sometimes referred to as "Dione B" Mythology *Dione (Titaness), a Titaness in Greek mythology *Dione (mythology) ...
and
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
's moon
Triton Triton commonly refers to: * Triton (mythology), a Greek god * Triton (moon), a satellite of Neptune Triton may also refer to: Biology * Triton cockatoo, a parrot * Triton (gastropod), a group of sea snails * ''Triton'', a synonym of ''Triturus' ...
, a possible subsurface ocean might be composed of salt water. It is possible that
halophile The halophiles, named after the Greek word for "salt-loving", are extremophiles that thrive in high salt concentrations. While most halophiles are classified into the domain Archaea, there are also bacterial halophiles and some eukaryotic species, ...
s could thrive in the ocean. As with
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
and Ganymede, the idea has been raised that
habitable Habitability refers to the adequacy of an environment for human living. Where housing is concerned, there are generally local ordinances which define habitability. If a residence complies with those laws it is said to be habitable. In extreme e ...
conditions and even extraterrestrial microbial life may exist in the salty ocean under the Callistoan surface. However, the environmental conditions necessary for life appear to be less favorable on Callisto than on Europa. The principal reasons are the lack of contact with rocky material and the lower heat flux from the interior of Callisto. Scientist Torrence Johnson said the following about comparing the odds of life on Callisto with the odds on other
Galilean moons The Galilean moons (), or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They were first seen by Galileo Galilei in December 1609 or January 1610, and recognized by him as satellites of Jupiter ...
:
The basic ingredients for life—what we call 'pre-biotic chemistry'—are abundant in many solar system objects, such as comets, asteroids and icy moons. Biologists believe liquid water and energy are then needed to actually support life, so it's exciting to find another place where we might have liquid water. But, energy is another matter, and currently, Callisto's ocean is only being heated by radioactive elements, whereas Europa has tidal energy as well, from its greater proximity to Jupiter.
Based on the considerations mentioned above and on other scientific observations, it is thought that of all of Jupiter's moons, Europa has the greatest chance of supporting microbial life.


Exploration

The '' Pioneer 10'' and ''
Pioneer 11 ''Pioneer 11'' (also known as ''Pioneer G'') is a robotic space probe launched by NASA on April 5, 1973, to study the asteroid belt, the environment around Jupiter and Saturn, solar winds, and cosmic rays. It was the first probe to encounter ...
'' Jupiter encounters in the early 1970s contributed little new information about Callisto in comparison with what was already known from Earth-based observations. The real breakthrough happened later with the '' Voyager 1'' and '' Voyager 2'' flybys in 1979. They imaged more than half of the Callistoan surface with a resolution of 1–2 km, and precisely measured its temperature, mass and shape. A second round of exploration lasted from 1994 to 2003, when the ''
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
'' spacecraft had eight close encounters with Callisto, the last flyby during the C30 orbit in 2001 came as close as 138 km to the surface. The ''Galileo'' orbiter completed the global imaging of the surface and delivered a number of pictures with a resolution as high as 15 meters of selected areas of Callisto. In 2000, the '' Cassini'' spacecraft en route to
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
acquired high-quality infrared spectra of the Galilean satellites including Callisto. In February–March 2007, the ''
New Horizons ''New Horizons'' is an Interplanetary spaceflight, interplanetary space probe that was launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research ...
'' probe on its way to Pluto obtained new images and spectra of Callisto. The next planned mission to the Jovian system is the
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (1205 ...
's Jupiter Icy Moons Explorer (JUICE), due to launch in 2023. Several close flybys of Callisto are planned during the mission.


Old proposals

Formerly proposed for a launch in 2020, the Europa Jupiter System Mission (EJSM) was a joint NASA/ ESA proposal for exploration of Jupiter's moons. In February 2009 it was announced that ESA/NASA had given this mission priority ahead of the Titan Saturn System Mission. At the time ESA's contribution still faced funding competition from other ESA projects. EJSM consisted of the NASA-led
Jupiter Europa Orbiter As a part of the defunct Europa Jupiter System Mission – Laplace (EJSM-Laplace), the Jupiter Europa Orbiter (JEO) was a proposed orbiter probe slated for lift-off in 2020 and planned for detailed studies of Jupiter's moons Europa and Io ...
, the ESA-led
Jupiter Ganymede Orbiter Jupiter Ganymede Orbiter (JGO) was a part of the international Europa Jupiter System Mission (EJSM). It was a proposed orbiter by the ESA slated for lift-off in 2020.JAXA The is the Japanese national air and space agency. Through the merger of three previously independent organizations, JAXA was formed on 1 October 2003. JAXA is responsible for research, technology development and launch of satellites into orb ...
-led
Jupiter Magnetospheric Orbiter The Jupiter Magnetospheric Orbiter (木星磁気圏オービター, JMO) is a cancelled space probe proposed by the Japanese Aerospace Exploration Agency (JAXA), to undertake detailed ''in situ'' studies of the magnetosphere of Jupiter as a templa ...
.


Potential crewed exploration and habitation

In 2003 NASA conducted a conceptual study called Human Outer Planets Exploration (HOPE) regarding the future human exploration of the outer Solar System. The target chosen to consider in detail was Callisto. The study proposed a possible surface base on Callisto that would produce
rocket propellant Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propuls ...
for further exploration of the Solar System. Advantages of a base on Callisto include low radiation (due to its distance from Jupiter) and geological stability. Such a base could facilitate remote exploration of
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
, or be an ideal location for a Jovian system waystation servicing spacecraft heading farther into the outer Solar System, using a gravity assist from a close flyby of Jupiter after departing Callisto. In December 2003, NASA reported that a crewed mission to Callisto might be possible in the 2040s.


See also

* Former classification of planets * Jupiter's moons in fiction *
List of craters on Callisto This is a list of named craters on Callisto, one of the many moons of Jupiter, the most heavily cratered natural satellite in the Solar System ''(for other features, see list of geological features on Callisto)''. As of 2020, the Working Group ...
*
List of geological features on Callisto This is a list of named geological features on Callisto, a moon of Jupiter. This list is complete as of August 2022. Catenae Callistoan catenae (crater chains) are named after rivers, valleys, and ravines in myths and folktales of cultures of ...
* List of natural satellites


Notes


References


External links


Callisto Profile
a
NASA's Solar System Exploration site


at ''The Nine Planets''

at ''Views of the Solar System''

from the Lunar and Planetary Institute
Images of Callisto at JPL's Planetary Photojournal
* Movie o
Callisto's rotation
from the National Oceanic and Atmospheric Administration
Callisto map with feature names
fro
Planetary PhotojournalCallisto nomenclature
an
Callisto map with feature names
from th
USGS planetary nomenclature page


* ttps://www.google.com/maps/space/callisto/@13.1830935,-94.1384306,6879202m/data=!3m1!1e3 Google Callisto 3D interactive map of the moon {{DEFAULTSORT:Callisto (Moon) 16100107 Discoveries by Galileo Galilei Moons of Jupiter Moons with a prograde orbit