I
<Batteries that are stored for a long period or that are discharged at a small fraction of the capacity lose capacity due to the presence of generally irreversible side reactions that consume charge carriers without producing current. This phenomenon is known as internal self-discharge. Further, when batteries are recharged, additional side reactions can occur, reducing capacity for subsequent discharges. After enough recharges, in essence all capacity is lost and the battery stops producing power.
Internal energy losses and limitations on the rate that ions pass through the electrolyte cause battery efficiency to vary. Above a minimum threshold, discharging at a low rate delivers more of the battery's capacity than at a higher rate. Installing batteries with varying A·h ratings does not affect device operation (although it may affect the operation interval) rated for a specific voltage unless load limits are exceeded. High-drain loads such as digital cameras can reduce total capacity, as happens with alkaline batteries. For example, a battery rated at 2 A·h for a 10- or 20-hour discharge would not sustain a current of 1 A for a full two hours as its stated capacity implies.
C rate
The C-rate is a measure of the rate at which a battery is being charged or discharged. It is defined as the current through the battery divided by the theoretical current draw under which the battery would deliver its nominal rated capacity in one hour.[32] It has the units h−1.
C-rate is used as a rating on batteries to indicate the maximum current that a battery can safely deliver on a circuit. Standards for rechargeable batteries generally rate the capacity over a 4-hour, 8 hour or longer discharge time. Types intended for special purposes, such as in a computer uninterruptible power supply, may be rated by manufacturers for discharge periods much less than one hour. Because of internal resistance loss and the chemical processes inside the cells, a battery rarely delivers nameplate rated capacity in only one hour.
Fast-charging, large and light batteries
As of 2012[update], lithium iron phosphate (LiFePO
4) battery technology was the fastest-charging/discharging, fully discharging in 10–20 seconds.[33]
<
Internal energy losses and limitations on the rate that ions pass through the electrolyte cause battery efficiency to vary. Above a minimum threshold, discharging at a low rate delivers more of the battery's capacity than at a higher rate. Installing batteries with varying A·h ratings does not affect device operation (although it may affect the operation interval) rated for a specific voltage unless load limits are exceeded. High-drain loads such as digital cameras can reduce total capacity, as happens with alkaline batteries. For example, a battery rated at 2 A·h for a 10- or 20-hour discharge would not sustain a current of 1 A for a full two hours as its stated capacity implies.
The C-rate is a measure of the rate at which a battery is being charged or discharged. It is defined as the current through the battery divided by the theoretical current draw under which the battery would deliver its nominal rated capacity in one hour.[32] It has the units h−1.
C-rate is used as a rating on batteries to indicate the maximum current that a battery can safely deliver on a circuit. Standards for rechargeable batteries generally rate the capacity over a 4-hour, 8 hour or longer discharge time.
C-rate is used as a rating on batteries to indicate the maximum current that a battery can safely deliver on a circuit. Standards for rechargeable batteries generally rate the capacity over a 4-hour, 8 hour or longer discharge time. Types intended for special purposes, such as in a computer uninterruptible power supply, may be rated by manufacturers for discharge periods much less than one hour. Because of internal resistance loss and the chemical processes inside the cells, a battery rarely delivers nameplate rated capacity in only one hour.
As of 2012[update], lithium iron phosphate (LiFePO
4) battery technology was the fastest-charging/discharging, fully discharging in 10–20 seconds.[33]
As of 2017[update], the world's largest battery was built in South Australia by Tesla. It can store 129 MWh.[34] A battery in Hebei Province, China which can store 36 MWh of electricity was built in 2013 at a cost of $500 million.[35] Another large battery, composed of Ni–Cd cells, was in Fairbanks, Alaska. It covered 2,000 square metres (22,000 sq ft)—bigger than a football pitch—and weighed 1,300 tonnes. It was manufactured by ABB to provide backup power in the event of a blackout. The battery can provide 40 MW of power for up to seven minutes.[36] Sodium–sulfur batteries have been used to store wind power.[37] A 4.4 MWh battery system that can deliver 11 MW for 25 minutes stabilizes the output of the Auwahi wind farm in Hawaii.[38]
Lithium–sulfur batteries were used on the longest and highest solar-powered flight.[39]
Battery life (and its synonym battery lifetime) has two meanings for rechargeable batteries but only one for non-chargeables. For rechargeables, it can mean either the length of time a device can run on a fully charged battery or the number of charge/discharge cycles possible before the cells fail to operate satisfactorily. For a non-rechargeable these two lives are equal since the cells last for only one cycle by definition. (The term shelf life is used to describe how long a battery will retain its performance between manufacture and use.) Available capacity of all batteries drops with decreasing temperature. In contrast to most of today's batteries, the Zamboni pile, invented in 1812, offers a very long service life without refurbishment or recharge, although it supplies current only in the nanoamp range. The Oxford Electric Bell has been ringing almost continuously since 1840 on its original pair of batteries, thought to be Zamboni piles.[citation needed]
Self-discharge
Disposable batteries typically lose 8 to 20 percent of their original charge
Disposable batteries typically lose 8 to 20 percent of their original charge per year when stored at room temperature (20–30 °C).[40] This is known as the "self-discharge" rate, and is due to non-current-producing "side" chemical reactions that occur within the cell even when no load is applied. The rate of side reactions is reduced for batteries stored at lower temperatures, although some can be damaged by freezing.
Old rechargeable batteries self-discharge more rapidly than disposable alka
Old rechargeable batteries self-discharge more rapidly than disposable alkaline batteries, especially nickel-based batteries; a freshly charged nickel cadmium (NiCd) battery loses 10% of its charge in the first 24 hours, and thereafter discharges at a rate of about 10% a month. However, newer low self-discharge nickel metal hydride (NiMH) batteries and modern lithium designs display a lower self-discharge rate (but still higher than for primary batteries).
Internal parts may corrode and fail, or the active materials may be slowly converted to inactive forms.
PhysiThe active material on the battery plates changes chemical composition on each charge and discharge cycle; active material may be lost due to physical changes of volume, further limiting the number of times the battery can be recharged. Most nickel-based batteries are partially discharged when purchased, and must be charged before first use.[41] Newer NiMH batteries are ready to be used when purchased, and have only 15% discharge in a year.[42]
Some deterioration occurs on each charge–discharge cycle. Degradation usually occurs because elec
Some deterioration occurs on each charge–discharge cycle. Degradation usually occurs because electrolyte migrates away from the electrodes or because active material detaches from the electrodes. Low-capacity NiMH batteries (1,700–2,000 mA·h) can be charged some 1,000 times, whereas high-capacity NiMH batteries (above 2,500 mA·h) last about 500 cycles.[43] NiCd batteries tend to be rated for 1,000 cycles before their internal resistance permanently increases beyond usable values.
Fast charging increases component changes, shortening battery lifespan.[43]
Overcharging
If a charger cannot detect when the battery is fully charged
If a charger cannot detect when the battery is fully charged then overcharging is likely, damaging it.[44]
Memory effect
NiCd cells, if used in a particular repetitive manner, may show a decrease in capacity called "memory effect".[45] The effect can be avoided with simple practices. NiMH cells, although similar in chemistry, suffer less from memory effect.[46]
Automotive lead–acid rechargeable batteries must endure stress due to vibration, shock, and temperature range. Because of these stresses and
sulfation of their lead plates, few automotive batteries last beyond six years of regular use.
[47] Automotive starting
(SLI: Starting, Lighting, Ignition) batteries have many thin plates to maximize current. In general, the thicker the plates the longer the life. They are typically discharged only slightly before recharge.
"Deep-cycle" lead–acid batteries such as those used in electric golf carts have much thicker plates to extend longevity.[48] The main benefit of the lead–acid battery is its low cost; its main drawbacks are large size and weight for a given capacity and voltage. Lead–acid batteries should never be discharged to below 20% of their capacity,[49] because internal resistance will cause heat and damage when they are recharged. Deep-cycle lead–acid systems often use a low-charge warning light or a low-charge power cut-off switch to prevent the type of damage that will shorten the battery's life.[50]
Storage
"Deep-cycle" lead–acid batteries such as those used in electric golf carts have much thicker plates to extend longevity.[48] The main benefit of the lead–acid battery is its low cost; its main drawbacks are large size and weight for a given capacity and voltage. Lead–acid batteries should never be discharged to below 20% of their capacity,[49] because internal resistance will cause heat and damage when they are recharged. Deep-cycle lead–acid systems often use a low-charge warning light or a low-charge power cut-off switch to prevent the type of damage that will shorten the battery's life.[50]
Battery life can be extended by storing the batteries at a low temperature, as in a refrigerator or freezer, which slows the side reactions. Such storage can extend the life of alkaline batteries by about 5%; rechargeable batteries can hold their charge much longer, depending upon type.[51] To reach their maximum voltage, batteries must be returned to room temperature; discharging an alkaline battery at 250 mA at 0 °C is only half as efficient as at 20 °C.[26] Alkaline battery manufacturers such as Duracell do not recommend refrigerating batteries.[25]
Battery sizes<Primary batteries readily available to consumers range from tiny button cells used for electric watches, to the No. 6 cell used for signal circuits or other long duration applications. Secondary cells are made in very large sizes; very large batteries can power a submarine or stabilize an electrical grid and help level out peak loads.
Hazards
Explosion
Secondary (rechargeable) batteries and their characteristics
Chemistry |
Cell voltage |
Specific energy (kJ/kg) |
Energy density (kJ/liter) |
Comments
|
NiCd |
1.2 |
140 |
|
Nickel–cadmium chemistry. Inexpensive. High-/low-drain, moderate energy density. Can withstand very high discharge rates with virtually no loss of capacity. Moderate rate of self-discharge. Environmental hazard due to Cadmium – use now virtually prohibited in Europe.
|
Lead–acid |
2.1 |
140 |
|
Moderately expensive. Moderate energy density. Moderate rate of self-discharge. Higher discharge rates result in considerable loss of capacity. Environmental hazard due to Lead. Common use – Automobile batteries
|
NiMH |
1.2 |
360 |
|
Nickel–metal hydride chemistry. Inexpensive. Performs better than alkaline batteries in higher drain devices. Traditional chemistry has high energy density, but also a high rate of self-discharge. Newer chemistry has
Secondary (rechargeable) batteries and their characteristics
Chemistry |
Cell voltage |
Specific energy (kJ/kg) |
Energy density (kJ/liter) |
Comments
|
NiCd |
1.2 |
140 |
|
Nickel–cadmium chemistry. Inexpensive. High-/low-drain, moderate energy density. Can withstand very high discharge rates with virtually no loss of capacity. Moderate rate of self-discharge. Environmental hazard due to Cadmium – use now virtually prohibited in Europe.
|
Lead–acid |
2.1 |
140 |
|
Moderately expensive. Moderate energy density. Moderate rate of self-discharge. Higher discharge rates result in considerable loss of capacity. Environmental hazard due to Lead. Common On 28 February 2017, the University of Texas at Austin issued a press release about a new type of solid-state battery, developed by a team led by lithium-ion battery inventor John Goodenough, "that could lead to safer, faster-charging, longer-lasting rechargeable batteries for handheld mobile devices, electric cars and stationary energy storage".[68]
More specifics about the new technology were published in the peer-reviewed scientific journal Energy & Environmental Science.
Independent reviews of the technology discuss the risk of fire and explosion from lithium-ion batteries under certain conditions because they use liquid electrolytes. The newly developed battery should be safer since it uses glass electrolytes that should eliminate short circuits. The solid-state battery is also said to have "three times the energy density", increasing its useful life in electric vehicles, for example. It should also be more ecologically sound since the technology uses less expensive, earth-friendly materials such as sodium extracted from seawater. They also have much longer life; "the cells have demonstrated more than 1,200 cycles with low cell resistance". The research and prototypes are not expected to lead to a commercially viable product in the near future, if ever, according to Chris Robinson of LUX Research. "This will have no tangible effect on electric vehicle adoption in the next 15 years, if it does at all. A key hurdle that many solid-state electrolytes face is lack of a scalable and cost-effective manufacturing process," he told The American Energy News in an e-mail.[69]
Homemade cells
Almost any liquid or moist object that has enough ions to be electrically conductive can serve as the electrolyte for a cell. As a novelty or science demonstration, it is possible to insert two electrodes made of different metals into a lemon,[70] potato,[71] etc. and generate small amounts of electricity. "Two-potato clocks" are also widely available in hobby and toy stores; they consist of a pair of cells, each consisting of a potato (lemon, et cetera) with two electrodes inserted into it, wired in series to form a battery with enough voltage to power a digital clock.[72] Homemade cells of this kind are of no practical use.
A voltaic pile can be made from two coins (such as a nickel and a penny) and a piece of paper towel dipped in salt water. Such a pile generates a very low voltage but, when many are stacked in series, they can replace normal batteries for a short time.[73]
Sony has developed a biological battery that generates electricity from sugar in a way that is similar to the processes observed in living organisms. The battery generates electricity through the use of enzymes that break down carbohydrates.[74]
Lead acid cells can easily be manufactured at home, but a tedious charge/discharge cycle is needed to 'form' the plates. This is a process in which lead sulfate forms on the plates and, during charge, is converted to lead dioxide (positive plate) and pure lead (negative plate). Repeating this process results in a microscopically rough surface, increasing the surface area, increasing the current the cell can deliver.[75]
Daniell cells are easy to make at home. Aluminium–air batteries can be produced with high-purity aluminium. Aluminium foil batteries will produce some electricity, but are not efficient, in part because a significant amount of (combustible) hydrogen gas is produced.
See also
| |