HOME
        TheInfoList



The uterus (from Latin "uterus", plural ''uteri'') or womb () is a major female hormone-responsive secondary sex organ of the reproductive system in humans and most other mammals. Things occurring in the uterus are described with the term ''in utero''. In the human, the lower end of the uterus, the cervix, opens into the vagina, while the upper end, the fundus, is connected to the fallopian tubes. It is within the uterus that the fetus develops during gestation. In the human embryo, the uterus develops from the paramesonephric ducts which fuse into the single organ known as a simplex uterus. The uterus has different forms in many other animals and in some it exists as two separate uteri known as a duplex uterus. In medicine, and related professions the term ''uterus'' is consistently used, while the Germanic-derived term ''womb'' is commonly used in everyday contexts.


Structure


The uterus is located within the pelvic region immediately behind and almost overlying the bladder, and in front of the sigmoid colon. The human uterus is pear-shaped and about long, broad (side to side), and thick.Manual of Obstetrics. (3rd ed.). Elsevier 2011. pp. 1–16. . A typical adult uterus weighs about 60 grams. The uterus can be divided anatomically into four regions: the fundus – the uppermost rounded portion of the uterus, the corpus (body), the cervix, and the cervical canal. The cervix protrudes into the vagina. The uterus is held in position within the pelvis by ligaments, which are part of the endopelvic fascia. These ligaments include the pubocervical ligaments, the cardinal ligaments, and the uterosacral ligaments. It is covered by a sheet-like fold of peritoneum, the broad ligament. From outside to inside, regions of the uterus include: * Cervix uteri – "neck of uterus" *External orifice of the uterus *Cervical canal *Internal orifice of the uterus * Body ( la|Corpus) *Uterine cavity *Fundus

Layers

The uterus has three layers, which together form the ''uterine wall''. From innermost to outermost, these layers are the endometrium, myometrium, and perimetrium. The endometrium is the inner epithelial layer, along with its mucous membrane, of the mammalian uterus. It has a basal layer and a functional layer; the functional layer thickens and then is sloughed during the menstrual cycle or estrous cycle. During pregnancy, the uterine glands and blood vessels in the endometrium further increase in size and number and form the decidua. Vascular spaces fuse and become interconnected, forming the placenta, which supplies oxygen and nutrition to the embryo and fetus.Blue Histology - Female Reproductive System
. School of Anatomy and Human Biology — The University of Western Australia Accessed 20061228 20:35
The myometrium of the uterus mostly consists of smooth muscle. The innermost layer of myometrium is known as the junctional zone, which becomes thickened in adenomyosis. The perimetrium is a serous layer of visceral peritoneum. It covers the outer surface of the uterus. Surrounding the uterus is a layer or band of fibrous and fatty connective tissue called the parametrium that connects the uterus to other tissues of the pelvis. Commensal organisms are present in the uterus and form the uterine microbiome. Image:Gray1169.png|Vertical section of mucous membrane of human uterus.


Support


The uterus is primarily supported by the pelvic diaphragm, perineal body, and urogenital diaphragm. Secondarily, it is supported by ligaments, including the peritoneal ligament and the broad ligament of uterus.The Pelvis
University College Cork Archived fro
the original
on 2008-02-27



Major ligaments


It is held in place by several peritoneal ligaments, of which the following are the most important (there are two of each):


Axis


Normally, the uterus lies in anteversion and anteflexion. In most women, the long axis of the uterus is bent forward on the long axis of the vagina, against the urinary bladder. This position is referred to as anteversion of the uterus. Furthermore, the long axis of the body of the uterus is bent forward at the level of the internal os with the long axis of the cervix. This position is termed anteflexion of the uterus. The uterus assumes an anteverted position in 50% of women, a retroverted position in 25% of women, and a midposed position in the remaining 25% of women.


Position


The uterus is in the middle of the pelvic cavity in frontal plane (due to ligamentum latum uteri). The fundus does not surpass the linea terminalis, while the vaginal part of the cervix does not extend below the interspinal line. The uterus is mobile and moves posteriorly under the pressure of a full bladder, or anteriorly under the pressure of a full rectum. If both are full, it moves upwards. Increased intra-abdominal pressure pushes it downwards. The mobility is conferred to it by musculo-fibrous apparatus that consists of suspensory and sustentacular part. Under normal circumstances the suspensory part keeps the uterus in anteflexion and anteversion (in 90% of women) and keeps it "floating" in the pelvis. The meaning of these terms are described below: The sustentacular part supports the pelvic organs and comprises the larger pelvic diaphragm in the back and the smaller urogenital diaphragm in the front. The pathological changes of the position of the uterus are: * retroversion/retroflexion, if it is fixed * hyperanteflexion – tipped too forward; most commonly congenital, but may be caused by tumors * anteposition, retroposition, lateroposition – the whole uterus is moved; caused by parametritis or tumors * elevation, descensus, prolapse * rotation (the whole uterus rotates around its longitudinal axis), torsion (only the body of the uterus rotates around) * inversion In cases where the uterus is "tipped", also known as retroverted uterus, the person may have symptoms of pain during sexual intercourse, pelvic pain during menstruation, minor incontinence, urinary tract infections, fertility difficulties, and difficulty using tampons. A pelvic examination by a doctor can determine if a uterus is tipped.


Blood supply


The uterus is supplied by arterial blood both from the uterine artery and the ovarian artery. Another anastomotic branch may also supply the uterus from anastomosis of these two arteries.


Nerve supply


Afferent nerves supplying the uterus are T11 and T12. Sympathetic supply is from the hypogastric plexus and the ovarian plexus. Parasympathetic supply is from the S2, S3 and S4 nerves.


Development


Bilateral Müllerian ducts form during early fetal life. In males, anti-müllerian hormone (AMH) secreted from the testes leads to their regression. In females, these ducts give rise to the Fallopian tubes and the uterus. In humans the lower segments of the two ducts fuse to form a single uterus, however, in cases of uterine malformations this development may be disturbed. The different uterine forms in various mammals are due to various degrees of fusion of the two Müllerian ducts. Various congenital conditions of the uterus can develop in utero. Though uncommon some of these are a double uterus, didelphic uterus, bicornate uterus and others.


Function


The reproductive function of the uterus is to accept a fertilized ovum which passes through the utero-tubal junction from the fallopian tube. The fertilized ovum divides to become a blastocyst, which implants into the endometrium, and derives nourishment from blood vessels which develop exclusively for this purpose. The fertilized ovum becomes an embryo, attaches to a wall of the uterus, creates a placenta, and develops into a fetus (gestates) until childbirth. Due to anatomical barriers such as the pelvis, the uterus is pushed partially into the abdomen due to its expansion during pregnancy. Even during pregnancy the mass of a human uterus amounts to only about a kilogram (2.2 pounds). The uterus also plays a role in sexual response, by directing blood flow to the pelvis and ovaries, and to the external genitals, including the vagina, labia, and clitoris. There is also some evidence that the uterus plays a role in cognition in a similar way to the ovaries. A study on rat models found that when the uterus was removed, the rats performed more poorly on spatial memory tasks. Prof. Bimonte-Nelson, the co-author of the study, explained: "the body's autonomic nervous system, which regulates 'automated' metabolic processes, such as heart rate, breathing, digestion, and sexual arousal, also has links to the uterus and brain." No similar studies have yet been conducted on humans.


Clinical significance


A hysterectomy is the surgical removal of the uterus which may be carried out for a number of reasons including the ridding of tumours both benign and malignant. A complete hysterectomy involves the removal of the body, fundus, and cervix of the uterus. A partial hysterectomy may just involve the removal of the uterine body while leaving the cervix intact. It is the most commonly performed gynecological surgical procedure. During pregnancy the growth rate of the fetus can be assessed by measuring the fundal height. Some pathological states include: * Prolapse of the uterus * Carcinoma of the cervix – malignant neoplasm * Carcinoma of the uterus – malignant neoplasm * Fibroids – benign neoplasms * Adenomyosis – ectopic growth of endometrial tissue within the myometrium * Endometritis, infection at the uterine cavity. * Pyometra – infection of the uterus, most commonly seen in dogs * Uterine malformations mainly congenital malformations including Uterine Didelphys, bicornuate uterus and septate uterus. It also includes congenital absence of the uterus Rokitansky syndrome * Asherman's syndrome, also known as intrauterine adhesions occurs when the basal layer of the endometrium is damaged by instrumentation (e.g. D&C) or infection (e.g. endometrial tuberculosis) resulting in endometrial scarring followed by adhesion formation which partially or completely obliterates the uterine cavity. * Hematometra, which is accumulation of blood within the uterus. * Accumulation of fluids other than blood or of unknown constitution. One study came to the conclusion that postmenopausal women with endometrial fluid collection on gynecologic ultrasonography should undergo endometrial biopsy if the endometrial lining is thicker than 3 mm or the endometrial fluid is echogenic. In cases of a lining 3 mm or less and clear endometrial fluid, endometrial biopsy was not regarded to be necessary, but endocervical curettage to rule out endocervical cancer was recommended. * Myometritis – inflammation of the muscular uterine wall.

Other animals

Most animals that lay eggs, such as birds and reptiles, including most ovoviviparous species, have an oviduct instead of a uterus. However, recent research into the biology of the viviparous (not merely ovoviviparous) skink ''Trachylepis ivensi'' has revealed development of a very close analogue to eutherian mammalian placental development. In monotremes, mammals which lay eggs, namely the platypus and the echidnas, either the term ''uterus'' or ''oviduct'' is used to describe the same organ, but the egg does not develop a placenta within the mother and thus does not receive further nourishment after formation and fertilization. Marsupials have two uteri, each of which connect to a lateral vagina and which both use a third, middle "vagina" which functions as the birth canal. Marsupial embryos form a choriovitelline placenta (which can be thought of as something between a monotreme egg and a "true" placenta), in which the egg's yolk sac supplies a large part of the embryo's nutrition but also attaches to the uterine wall and takes nutrients from the mother's bloodstream. However, bandicoots also have a rudimentary chorioallantoic placenta, similar to those of placental mammals. The fetus usually develops fully in placental mammals and only partially in marsupials including kangaroos and opossums. In marsupials the uterus forms as a duplex organ of two uteri. In monotremes (egg-laying mammals) such as the platypus, the uterus is duplex and rather than nurturing the embryo, secretes the shell around the egg. It is essentially identical with the shell gland of birds and reptiles, with which the uterus is homologous. In mammals, the four main forms of the uterus are: duplex, bipartite, bicornuate and simplex.Lewitus, Eric, and Christophe Soligo.
Life-history correlates of placental structure in eutherian evolution
." Evolutionary Biology 38.3 (2011): 287-305.
; Duplex: There are two wholly separate uteri, with one fallopian tube each. Found in marsupials (such as kangaroos, Tasmanian devils, opossums, etc.), rodents (such as mice, rats, and guinea pigs), and lagomorpha (rabbits and hares). ; Bipartite: The two uteri are separate for most of their length, but share a single cervix. Found in ruminants (deer, moose, elk etc.), hyraxes, cats, and horses. ; Bicornuate: The upper parts of the uterus remain separate, but the lower parts are fused into a single structure. Found in dogs, pigs, elephants, whales, dolphins, and tarsiers, and strepsirrhine primates among others. ; Simplex: The entire uterus is fused into a single organ. Found in higher primates (including humans and chimpanzees). Occasionally, some individual females (including humans) may have a bicornuate uterus, a uterine malformation where the two parts of the uterus fail to fuse completely during fetal development. Two uteri usually form initially in a female and usually male fetus, and in placental mammals they may partially or completely fuse into a single uterus depending on the species. In many species with two uteri, only one is functional. Humans and other higher primates such as chimpanzees, usually have a single completely fused uterus, although in some individuals the uteri may not have completely fused.


Additional images


400px| 1. Vulva; 9._[[Vagina;
14._[[Uterus.html" style="text-decoration: none;"class="mw-redirect" title="Vagina.html" style="text-decoration: none;"class="mw-redirect" title="Vulva; 9. [[Vagina">Vulva; 9. [[Vagina;
14. [[Uterus">Vagina.html" style="text-decoration: none;"class="mw-redirect" title="Vulva; 9. [[Vagina">Vulva; 9. [[Vagina;
14. [[Uterus: Parts: 15. [[Cervix; 16. Body and 17. Fundus. 18. Orifices: External and Internal; 19. [[Cervical canal; 20. [[Uterine cavity; Layers: 21. [[Endometrium; 22. [[Myometrium and 23. Perimetrium
24. Fallopian tube
30. Ovary
31. Visceral pelvic peritoneum: 32. Broad ligament (with 35. Mesometrium)
Ligaments: 36. Round
Blood vessels: 40. Uterine artery and veins
Other: 42. Ureter; 46. Internal iliac vessels (anterior branches); 48. Abdominal cavity Image:Scheme_female_reproductive_system-en.svg|Schematic frontal view of female anatomy Image:Illu icd o codes.jpg Image:Gray34.png|Sectional plan of the gravid uterus in the third and fourth month. Image:Gray38.png|Fetus in utero, between fifth and sixth months. Image:Gray1165.png|Female pelvis and its contents, seen from above and in front. Image:Gray1170.png|The arteries of the internal organs of generation of the female, seen from behind. Image:Gray1230.png|Median sagittal section of female pelvis. Image:Illu female pelvis.jpg|(Description located on :File:Illu female pelvis.jpg|image page) File:Slide4DDD.JPG|Uterus


See also


* Menopause * Artificial uterus * Social uterus * Unicornuate uterus


References





External links


*  – "The Female Pelvis: Organs in the Female and male Pelvis in situ"
Encyclopedia.comUterus Anatomy

Uterus Pregnancy
{{Authority control Category:Organs (anatomy) Category:Pelvis Category:Mammal female reproductive system Category:Human female reproductive system Category:Women's health