HOME

TheInfoList



OR:

In
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ' ...
, a representation of an
associative algebra In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplica ...
is a module for that algebra. Here an associative algebra is a (not necessarily unital)
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
. If the algebra is not unital, it may be made so in a standard way (see the
adjoint functors In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kn ...
page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra.


Examples


Linear complex structure

One of the simplest non-trivial examples is a
linear complex structure In mathematics, a complex structure on a real vector space ''V'' is an automorphism of ''V'' that squares to the minus identity, −''I''. Such a structure on ''V'' allows one to define multiplication by complex scalars in a canonical fashion ...
, which is a representation of the complex numbers C, thought of as an associative algebra over the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every r ...
s R. This algebra is realized concretely as \mathbb = \mathbb (x^2+1), which corresponds to . Then a representation of C is a real
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but ca ...
''V'', together with an action of C on ''V'' (a map \mathbb \to \mathrm(V)). Concretely, this is just an action of  , as this generates the algebra, and the operator representing (the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
of in End(''V'')) is denoted ''J'' to avoid confusion with the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or ...
''I''.


Polynomial algebras

Another important basic class of examples are representations of
polynomial algebra In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
s, the free commutative algebras – these form a central object of study in
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent ...
and its geometric counterpart,
algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrica ...
. A representation of a polynomial algebra in variables over the
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''K'' is concretely a ''K''-vector space with commuting operators, and is often denoted K _1,\dots,T_k meaning the representation of the abstract algebra K _1,\dots,x_k/math> where x_i \mapsto T_i. A basic result about such representations is that, over an
algebraically closed field In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
, the representing
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
are simultaneously triangularisable. Even the case of representations of the polynomial algebra in a single variable are of interest – this is denoted by K /math> and is used in understanding the structure of a single
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
on a
finite-dimensional In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to dist ...
vector space. Specifically, applying the
structure theorem for finitely generated modules over a principal ideal domain In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finite ...
to this algebra yields as
corollaries In mathematics and logic, a corollary ( , ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another ...
the various canonical forms of matrices, such as
Jordan canonical form In linear algebra, a Jordan normal form, also known as a Jordan canonical form (JCF), is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to so ...
. In some approaches to
noncommutative geometry Noncommutative geometry (NCG) is a branch of mathematics concerned with a geometric approach to noncommutative algebras, and with the construction of ''spaces'' that are locally presented by noncommutative algebras of functions (possibly in some g ...
, the free noncommutative algebra (polynomials in non-commuting variables) plays a similar role, but the analysis is much more difficult.


Weights

Eigenvalues and eigenvectors In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
can be generalized to algebra representations. The generalization of an
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
of an algebra representation is, rather than a single scalar, a one-dimensional representation \lambda\colon A \to R (i.e., an
algebra homomorphism In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if and are algebras over a field (or commutative ring) , it is a function F\colon A\to B such that for all in and in , * F(kx) = kF(x ...
from the algebra to its underlying ring: a
linear functional In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field of scalars (often, the real numbers or the complex numbers). If is a vector space over a field , the s ...
that is also multiplicative).Note that for a field, the
endomorphism algebra In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a gro ...
of a one-dimensional vector space (a line) is canonically equal to the underlying field: End(''L'') = K, since all endomorphisms are scalar multiplication; there is thus no loss in restricting to concrete maps to the base field, rather than to abstract representations. For rings there are also maps to
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. I ...
s, which need not factor through maps to the ring itself, but again abstract modules are not needed.
This is known as a
weight In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quan ...
, and the analog of an eigenvector and eigenspace are called ''weight vector'' and ''weight space''. The case of the eigenvalue of a single operator corresponds to the algebra R and a map of algebras R \to R is determined by which scalar it maps the generator ''T'' to. A weight vector for an algebra representation is a vector such that any element of the algebra maps this vector to a multiple of itself – a one-dimensional submodule (subrepresentation). As the pairing A \times M \to M is bilinear, "which multiple" is an ''A''-linear functional of ''A'' (an algebra map ''A'' → ''R''), namely the weight. In symbols, a weight vector is a vector m \in M such that am = \lambda(a)m for all elements a \in A, for some linear functional \lambda – note that on the left, multiplication is the algebra action, while on the right, multiplication is scalar multiplication. Because a weight is a map to a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not ...
, the map factors through the abelianization of the algebra \mathcal – equivalently, it vanishes on the derived algebra – in terms of matrices, if v is a common eigenvector of operators T and U, then T U v = U T v (because in both cases it is just multiplication by scalars), so common eigenvectors of an algebra must be in the set on which the algebra acts commutatively (which is annihilated by the derived algebra). Thus of central interest are the free commutative algebras, namely the
polynomial algebra In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
s. In this particularly simple and important case of the polynomial algebra \mathbf _1,\dots,T_k/math> in a set of commuting matrices, a weight vector of this algebra is a simultaneous eigenvector of the matrices, while a weight of this algebra is simply a k-tuple of scalars \lambda = (\lambda_1,\dots,\lambda_k) corresponding to the eigenvalue of each matrix, and hence geometrically to a point in k-space. These weights – in particularly their geometry – are of central importance in understanding the
representation theory of Lie algebras In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is g ...
, specifically the finite-dimensional representations of semisimple Lie algebras. As an application of this geometry, given an algebra that is a quotient of a polynomial algebra on k generators, it corresponds geometrically to an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
in k-dimensional space, and the weight must fall on the variety – i.e., it satisfies the defining equations for the variety. This generalizes the fact that eigenvalues satisfy the
characteristic polynomial In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The char ...
of a matrix in one variable.


See also

*
Representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
*
Intertwiner In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, ...
* Representation theory of Hopf algebras *
Lie algebra representation In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices (or endomorphisms of a vector space) in such a way that the Lie bracket is g ...
* Schur’s lemma *
Jacobson density theorem In mathematics, more specifically non-commutative ring theory, modern algebra, and module theory, the Jacobson density theorem is a theorem concerning simple modules over a ring . The theorem can be applied to show that any primitive ring can be ...
* Double commutant theorem


Notes


References

* Richard S. Pierce. ''Associative algebras''. Graduate texts in mathematics, Vol. 88, Springer-Verlag, 1982, {{refend Algebras Module theory Representation theory