Representation Theory Of Hopf Algebras
   HOME
*





Representation Theory Of Hopf Algebras
In abstract algebra, a representation of a Hopf algebra is a algebra representation, representation of its underlying associative algebra. That is, a representation of a Hopf algebra ''H'' over a field ''K'' is a ''K''-vector space ''V'' with an Group action (mathematics), action ''H'' × ''V'' → ''V'' usually denoted by juxtaposition ( that is, the image of (''h'',''v'') is written ''hv'' ). The vector space ''V'' is called an ''H''-module. Properties The module structure of a representation of a Hopf algebra ''H'' is simply its structure as a module for the underlying associative algebra. The main use of considering the additional structure of a Hopf algebra is when considering all ''H''-modules as a category. The additional structure is also used to define invariant elements of an ''H''-module ''V''. An element ''v'' in ''V'' is Invariant (mathematics), invariant under ''H'' if for all ''h'' in ''H'', ''hv'' = ε(''h'')''v'', where ε is the counit of ''H''. The subset of all i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an object ''I'' that is both a left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagrams commute. The ordinary tensor product makes vector spaces, abelian groups, ''R''-modules, or ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category's objects and whose binary operation is given by the category's tensor product. A rather different application, of which monoidal categories can be considered an abstractio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivariant
In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. Equivariant maps generalize the concept of invariants, functions whose value is unchanged by a symmetry transformation of their argument. The value of an equivariant map is often (imprecisely) called an invariant. In statistical inference, equivariance under statistical transformations of data is an important property of various estimation methods; see invariant estimator for details. In pure mathematics, equivariance is a central object of study in equivariant topology and its subtopics equivariant cohomology and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pairing
In mathematics, a pairing is an ''R''-bilinear map from the Cartesian product of two ''R''-modules, where the underlying ring ''R'' is commutative. Definition Let ''R'' be a commutative ring with unit, and let ''M'', ''N'' and ''L'' be ''R''-modules. A pairing is any ''R''-bilinear map e:M \times N \to L. That is, it satisfies :e(r\cdot m,n)=e(m,r \cdot n)=r\cdot e(m,n), :e(m_1+m_2,n)=e(m_1,n)+e(m_2,n) and e(m,n_1+n_2)=e(m,n_1)+e(m,n_2) for any r \in R and any m,m_1,m_2 \in M and any n,n_1,n_2 \in N . Equivalently, a pairing is an ''R''-linear map :M \otimes_R N \to L where M \otimes_R N denotes the tensor product of ''M'' and ''N''. A pairing can also be considered as an ''R''-linear map \Phi : M \to \operatorname_ (N, L) , which matches the first definition by setting \Phi (m) (n) := e(m,n) . A pairing is called perfect if the above map \Phi is an isomorphism of ''R''-modules. A pairing is called non-degenerate on the right if for the above map we have that e(m,n) = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Representation
In mathematics, if is a group and is a linear representation of it on the vector space , then the dual representation is defined over the dual vector space as follows: : is the transpose of , that is, = for all . The dual representation is also known as the contragredient representation. If is a Lie algebra and is a representation of it on the vector space , then the dual representation is defined over the dual vector space as follows: : = for all . The motivation for this definition is that Lie algebra representation associated to the dual of a Lie group representation is computed by the above formula. But the definition of the dual of a Lie algebra representation makes sense even if it does not come from a Lie group representation. In both cases, the dual representation is a representation in the usual sense. Properties Irreducibility and second dual If a (finite-dimensional) representation is irreducible, then the dual representation is also irreducible—but ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Comultiplication
In mathematics, coalgebras or cogebras are structures that are dual (in the category-theoretic sense of reversing arrows) to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by (vector space) duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions ( see below). Coalgebras occur naturally in a number of contexts (for example, representation theory, universal enveloping algebras and group schemes). There are also F-coalgebras, with important applications in computer science. Informal discussion One frequently recurring example of coalgebras occurs in representation theory, and in particular, in the representation theory of the rotation group. A primary task, of practical use in physics, is to obtain combinations of systems with different states of angul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bialgebra
In mathematics, a bialgebra over a field ''K'' is a vector space over ''K'' which is both a unital associative algebra and a counital coassociative coalgebra. The algebraic and coalgebraic structures are made compatible with a few more axioms. Specifically, the comultiplication and the counit are both unital algebra homomorphisms, or equivalently, the multiplication and the unit of the algebra both are coalgebra morphisms. (These statements are equivalent since they are expressed by the same commutative diagrams.) Similar bialgebras are related by bialgebra homomorphisms. A bialgebra homomorphism is a linear map that is both an algebra and a coalgebra homomorphism. As reflected in the symmetry of the commutative diagrams, the definition of bialgebra is self-dual, so if one can define a dual of ''B'' (which is always possible if ''B'' is finite-dimensional), then it is automatically a bialgebra. Formal definition (''B'', ∇, η, Δ, ε) is a bialgebra over ''K'' if it h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebra Homomorphism
In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if and are algebras over a field (or commutative ring) , it is a function F\colon A\to B such that for all in and in , * F(kx) = kF(x) * F(x + y) = F(x) + F(y) * F(xy) = F(x) F(y) The first two conditions say that is a ''K''-linear map (or ''K''-module homomorphism if ''K'' is a commutative ring), and the last condition says that is a (non-unital) ring homomorphism. If admits an inverse homomorphism, or equivalently if it is bijective, is said to be an isomorphism between and . Unital algebra homomorphisms If ''A'' and ''B'' are two unital algebras, then an algebra homomorphism F:A\rightarrow B is said to be ''unital'' if it maps the unity of ''A'' to the unity of ''B''. Often the words "algebra homomorphism" are actually used to mean "unital algebra homomorphism", in which case non-unital algebra homomorphisms are excluded. A unital algebra homomorphism is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Einstein's Summation Convention
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in physics applications that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916. Introduction Statement of convention According to this convention, when an index variable appears twice in a single term and is not otherwise defined (see Free and bound variables), it implies summation of that term over all the values of the index. So where the indices can range over the set , : y = \sum_^3 c_i x^i = c_1 x^1 + c_2 x^2 + c_3 x^3 is simplified by the convention to: : y = c_i x^i The upper indices are not exponents but are indic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Algebra
Hopf is a German surname. Notable people with the surname include: *Eberhard Hopf (1902–1983), Austrian mathematician *Hans Hopf (1916–1993), German tenor *Heinz Hopf (1894–1971), German mathematician *Heinz Hopf (actor) (1934–2001), Swedish actor *Ludwig Hopf (1884–1939), German physicist *Maria Hopf Maria Hopf (13 September 1913 – 24 August 2008) was a pioneering archaeobotanist, based at the RGZM, Mainz. Career Hopf studied botany from 1941–44, receiving her doctorate in 1947 on the subject of soil microbes. She then worked in phyto ... (1914-2008), German botanist and archaeologist {{surname, Hopf German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]