HOME

TheInfoList



OR:

Lawrencium is a
synthetic Synthetic things are composed of multiple parts, often with the implication that they are artificial. In particular, 'synthetic' may refer to: Science * Synthetic chemical or compound, produced by the process of chemical synthesis * Synthetic ...
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Lr (formerly Lw) and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
103. It is named in honor of
Ernest Lawrence Ernest Orlando Lawrence (August 8, 1901 – August 27, 1958) was an American nuclear physicist and winner of the Nobel Prize in Physics in 1939 for his invention of the cyclotron. He is known for his work on uranium-isotope separation fo ...
, inventor of the
cyclotron A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Jan ...
, a device that was used to discover many artificial
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
elements. A radioactive
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
, lawrencium is the eleventh transuranic element and the last member of the
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
series. Like all elements with atomic number over 100, lawrencium can only be produced in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s by bombarding lighter elements with charged particles. Fourteen
isotopes of lawrencium Lawrencium (103Lr) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 258Lr in 1961. There are fourteen known isotopes from 251 ...
are currently known; the most stable is 266Lr with
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
11 hours, but the shorter-lived 260Lr (half-life 2.7 minutes) is most commonly used in chemistry because it can be produced on a larger scale. Chemistry experiments confirm that lawrencium behaves as a heavier homolog to lutetium in the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, and is a
trivalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Description The combining capacity, or affinity of an ...
element. It thus could also be classified as the first of the 7th-period
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s: however, its
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
is anomalous for its position in the periodic table, having an s2p configuration instead of the s2d configuration of its homolog lutetium. This means that lawrencium may be more volatile than expected for its position in the periodic table and have a volatility comparable to that of
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
. In the 1950s, 1960s, and 1970s, many claims of the synthesis of lawrencium of varying quality were made from laboratories in the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
and the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country Continental United States, primarily located in North America. It consists of 50 U.S. state, states, a Washington, D.C., ...
. The priority of the discovery and therefore the name of the element was disputed between Soviet and American scientists, and while the
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(IUPAC) initially established ''lawrencium'' as the official name for the element and gave the American team credit for the discovery, this was reevaluated in 1997, giving both teams shared credit for the discovery but not changing the element's name.


Introduction


History

In 1958, scientists at
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory (LBNL), commonly referred to as the Berkeley Lab, is a United States national laboratory that is owned by, and conducts scientific research on behalf of, the United States Department of Energy. Located in ...
claimed the discovery of element 102, now called
nobelium Nobelium is a synthetic chemical element with the symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penul ...
. At the same time, they also tried to synthesize element 103 by bombarding the same
curium Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first in ...
target used with
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
-14 ions. Eighteen tracks were noted, with decay energy around and half-life around 0.25 s; the Berkeley team noted that while the cause could be the production of an isotope of element 103, other possibilities could not be ruled out. While the data agrees reasonably with that later discovered for 257Lr (
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of ...
8.87 MeV, half-life 0.6 s), the evidence obtained in this experiment fell far short of the strength required to conclusively demonstrate synthesis of element 103. A follow-up on this experiment was not done, as the target was destroyed. (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879–886, 1991) Later, in 1960, the Lawrence Berkeley Laboratory attempted to synthesize the element by bombarding 252 Cf with 10B and 11B. The results of this experiment were not conclusive. The first important work on element 103 was done at Berkeley by the nuclear-physics team of Albert Ghiorso, Torbjørn Sikkeland, Almon Larsh, Robert M. Latimer, and their co-workers on February 14, 1961. The first atoms of lawrencium were reportedly made by bombarding a three- milligram target consisting of three isotopes of
californium Californium is a radioactive chemical element with the symbol Cf and atomic number 98. The element was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding c ...
with
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has t ...
-10 and boron-11 nuclei from the Heavy Ion Linear Accelerator (HILAC). The Berkeley team reported that the
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
257103 was detected in this manner, and that it decayed by emitting an 8.6 MeV
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be prod ...
with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
of . This identification was later corrected to 258103, as later work proved that 257Lr did not have the properties detected, but 258Lr did. This was considered at the time to be convincing proof of synthesis of element 103: while the mass assignment was less certain and proved to be mistaken, it did not affect the arguments in favor of element 103 having been synthesized. Scientists at
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
in
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of ''naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one o ...
(then in the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
) raised several criticisms: all but one were answered adequately. The exception was that 252Cf was the most common isotope in the target, and in the reactions with 10B, 258Lr could only have been produced by emitting four neutrons, and emitting three neutrons was expected to be much less likely than emitting four or five. This would lead to a narrow yield curve, not the broad one reported by the Berkeley team. A possible explanation was that there was a low number of events attributed to element 103. This was an important intermediate step to the unquestioned discovery of element 103, although the evidence was not completely convincing. The Berkeley team proposed the name "lawrencium" with symbol "Lw", after
Ernest Lawrence Ernest Orlando Lawrence (August 8, 1901 – August 27, 1958) was an American nuclear physicist and winner of the Nobel Prize in Physics in 1939 for his invention of the cyclotron. He is known for his work on uranium-isotope separation fo ...
, inventor of the
cyclotron A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Jan ...
. The IUPAC Commission on Nomenclature of Inorganic Chemistry accepted the name, but changed the symbol to "Lr". This acceptance of the discovery was later characterized as being hasty by the Dubna team. : + → * → + 5 The first work at Dubna on element 103 came in 1965, when they reported to have made 256103 in 1965 by bombarding 243 Am with 18 O, identifying it indirectly from its granddaughter fermium-252. The half-life they reported was somewhat too high, possibly due to background events. Later 1967 work on the same reaction identified two decay energies in the ranges 8.35–8.50 MeV and 8.50–8.60 MeV: these were assigned to 256103 and 257103. Despite repeat attempts, they were unable to confirm assignment of an alpha emitter with a half-life of 8 seconds to 257103. The Russians proposed the name "rutherfordium" for the new element in 1967: this name was later proposed by Berkeley for element 104. : + → * → + 5 Further experiments in 1969 at Dubna and in 1970 at Berkeley demonstrated an
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
chemistry for the new element; so by 1970 it was known that element 103 is the last actinide. In 1970, the Dubna group reported the synthesis of 255103 with half-life 20 s and alpha decay energy 8.38 MeV. However, it was not until 1971, when the nuclear physics team at University of California at Berkeley successfully did a whole series of experiments aimed at measuring the nuclear decay properties of the lawrencium isotopes with mass numbers 255 to 260, that all previous results from Berkeley and Dubna were confirmed, apart from the Berkeley's group initial erroneous assignment of their first produced isotope to 257103 instead of the probably correct 258103. All final doubts were dispelled in 1976 and 1977 when the energies of
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s emitted from 258103 were measured. In 1971, the IUPAC granted the discovery of lawrencium to the Lawrence Berkeley Laboratory, even though they did not have ideal data for the element's existence. But in 1992, the
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
Transfermium Working Group (TWG) officially recognized the nuclear physics teams at Dubna and Berkeley as co-discoverers of lawrencium, concluding that while the 1961 Berkeley experiments were an important step to lawrencium's discovery, they were not yet fully convincing; and while the 1965, 1968, and 1970 Dubna experiments came very close to the needed level of confidence taken together, only the 1971 Berkeley experiments, which clarified and confirmed previous observations, finally resulted in complete confidence in the discovery of element 103. Because the name "lawrencium" had been in use for a long time by this point, it was retained by IUPAC, and in August 1997, the
International Union of Pure and Applied Chemistry The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
(IUPAC) ratified the name lawrencium and the symbol "Lr" during a meeting in
Geneva Geneva ( ; french: Genève ) frp, Genèva ; german: link=no, Genf ; it, Ginevra ; rm, Genevra is the second-most populous city in Switzerland (after Zürich) and the most populous city of Romandy, the French-speaking part of Switzerland. Situa ...
.


Characteristics


Physical

Lawrencium is the last
actinide The actinide () or actinoid () series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The info ...
. Among those who study the matter, it is generally considered a
group 3 element Group 3 is the first group of transition metals in the periodic table. This group is closely related to the rare-earth elements. Although some controversy exists regarding the composition and placement of this group, it is generally agreed among ...
, along with
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
,
yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in co ...
, and lutetium, as its filled f-shell is expected to make it resemble the 7th-period
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s; though there has been some dispute on this point. In the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, it is to the right of the actinide
nobelium Nobelium is a synthetic chemical element with the symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penul ...
, to the left of the 6d transition metal
rutherfordium Rutherfordium is a chemical element with the symbol Rf and atomic number 104, named after New Zealand-born British physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a laboratory. It is radioactiv ...
, and under the lanthanide lutetium with which it shares many physical and chemical properties. Lawrencium is expected to be a solid under normal conditions and have a hexagonal close-packed crystal structure (''c''/''a'' = 1.58), similar to its lighter congener lutetium, though this is not yet known experimentally. The
enthalpy Enthalpy , a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant ...
of sublimation of lawrencium is estimated at 352 kJ/mol, close to the value of lutetium and strongly suggesting that metallic lawrencium is trivalent with three electrons delocalized, a prediction also supported by a systematic extrapolation of the values of
heat of vaporization The enthalpy of vaporization (symbol ), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. T ...
,
bulk modulus The bulk modulus (K or B) of a substance is a measure of how resistant to compression the substance is. It is defined as the ratio of the infinitesimal pressure increase to the resulting ''relative'' decrease of the volume. Other moduli descri ...
, and atomic volume of neighboring elements to lawrencium: this makes it unlike the immediately preceding late actinides which are known to be (fermium and mendelevium) or expected to be (nobelium) divalent. The estimated enthalpies of vaporization show that lawrencium deviates from the trend of the late actinides and instead matches the trend of the succeeding 6d elements rutherfordium and dubnium, consistent with lawrencium's interpretation as a group 3 element. Some scientists prefer to end the actinides with nobelium and consider lawrencium to be the first transition metal of the seventh period. Specifically, lawrencium is expected to be a trivalent, silvery metal, easily
oxidized Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
by air,
steam Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporizatio ...
, and
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a se ...
s, and having an atomic volume similar to that of lutetium and a trivalent metallic radius of 171  pm. It is expected to be a rather heavy metal with a density of around 14.4 g/cm3. It is also predicted to have a
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
of around 1900  K (1627 
°C The degree Celsius is the unit of temperature on the Celsius scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the Kelvin scale. The d ...
), not far from the value for lutetium (1925 K).


Chemical

In 1949, Glenn T. Seaborg, who devised the
actinide concept In nuclear chemistry, the actinide concept proposed that the actinides form a second inner transition series homologous to the lanthanides. Its origins stem from observation of lanthanide-like properties in transuranic elements in contrast to the d ...
, predicted that element 103 (lawrencium) should be the last actinide and that the ion should be about as stable as in
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be r ...
. It was not until decades later that element 103 was finally conclusively synthesized and this prediction was experimentally confirmed. 1969 studies on the element showed that lawrencium reacts with
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
to form a product that was most likely the trichloride, . Its volatility was found to be similar to the chlorides of
curium Curium is a transuranic, radioactive chemical element with the symbol Cm and atomic number 96. This actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first in ...
, fermium, and
nobelium Nobelium is a synthetic chemical element with the symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penul ...
and much less than that of
rutherfordium Rutherfordium is a chemical element with the symbol Rf and atomic number 104, named after New Zealand-born British physicist Ernest Rutherford. As a synthetic element, it is not found in nature and can only be made in a laboratory. It is radioactiv ...
chloride. In 1970, chemical studies were performed on 1500 atoms of 256Lr, comparing it with divalent ( No, Ba, Ra), trivalent ( Fm, Cf, Cm, Am, Ac), and tetravalent ( Th, Pu) elements. It was found that lawrencium coextracted with the trivalent ions, but the short half-life of 256Lr precluded a confirmation that it eluted ahead of in the elution sequence. Lawrencium occurs as the trivalent ion in aqueous solution and hence its compounds should be similar to those of the other trivalent actinides: for example, lawrencium(III)
fluoride Fluoride (). According to this source, is a possible pronunciation in British English. is an inorganic, monatomic anion of fluorine, with the chemical formula (also written ), whose salts are typically white or colorless. Fluoride salts ty ...
() and
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. ...
() should both be insoluble in water. Due to the actinide contraction, the ionic radius of should be smaller than that of , and it should elute ahead of when ammonium α-hydroxyisobutyrate (ammonium α-HIB) is used as an eluant. Later 1987 experiments on the longer-lived isotope 260Lr confirmed lawrencium's trivalency and that it eluted in roughly the same place as
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, ...
, and found that lawrencium's ionic radius was , larger than would be expected from simple extrapolation from periodic trends. Later 1988 experiments with more lawrencium atoms refined this to and calculated an enthalpy of hydration value of . It was also found that the actinide contraction at the end of the actinides was larger than the analogous lanthanide contraction, with the exception of the last actinide, lawrencium: the cause was speculated to be relativistic effects. It has been speculated that the 7s electrons are relativistically stabilized, so that in reducing conditions, only the 7p1/2 electron would be ionized, leading to the monovalent ion. However, all experiments to reduce to or in aqueous solution were unsuccessful, similarly to lutetium. On the basis of this, the
standard electrode potential In electrochemistry, standard electrode potential E^\ominus, or E^\ominus_, is a measure of the reducing power of any element or compound. The IUPAC "Gold Book" defines it as: ''"the value of the standard emf (electromotive force) of a cell in wh ...
of the ''E''°() couple was calculated to be less than −1.56  V, indicating that the existence of ions in aqueous solution was unlikely. The upper limit for the ''E''°() couple was predicted to be −0.44 V: the values for ''E''°() and ''E''°() are predicted to be −2.06 V and +7.9 V. The stability of the group oxidation state in the 6d transition series decreases as RfIV > DbV > SgVI, and lawrencium continues the trend with LrIII being more stable than RfIV. In the molecule lawrencium dihydride (), which is predicted to be bent, the 6d orbital of lawrencium is not expected to play a role in the bonding, unlike that of lanthanum dihydride (). has La–H bond distances of 2.158 Å, while should have shorter Lr–H bond distances of 2.042 Å due to the relativistic contraction and stabilization of the 7s and 7p orbitals involved in the bonding, in contrast to the core-like 5f subshell and the mostly uninvolved 6d subshell. In general, molecular and LrH are expected to resemble the corresponding
thallium Thallium is a chemical element with the symbol Tl and atomic number 81. It is a gray post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes an ...
species (thallium having a 6s26p1 valence configuration in the gas phase, like lawrencium's 7s27p1) more than the corresponding
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yt ...
species. The electron configurations of and are expected to be 7s2 and 7s1 respectively. However, in species where all three valence electrons of lawrencium are ionized to give at least formally the cation, lawrencium is expected to behave like a typical actinide and the heavier congener of lutetium, especially because the first three ionization potentials of lawrencium are predicted to be similar to those of lutetium. Hence, unlike thallium but like lutetium, lawrencium would prefer to form than LrH, and Lr CO is expected to be similar to the also unknown LuCO, both metals having valence configuration σ2π1 in their monocarbonyls. The pπ–dπ bond is expected to be seen in just as it is for and more generally all the . The complex anion is expected to be stable with a configuration of 6d1 for lawrencium; this 6d orbital would be its highest occupied molecular orbital. This is analogous to the electronic structure of the analogous lutetium compound.


Atomic

Lawrencium has three
valence electron In chemistry and physics, a valence electron is an electron in the outer shell associated with an atom, and that can participate in the formation of a chemical bond if the outer shell is not closed. In a single covalent bond, a shared pair form ...
s: the 5f electrons are in the atomic core. In 1970, it was predicted that the ground-state
electron configuration In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. For example, the electron configuration of the neon ato ...
of lawrencium was nf146d17s2 (ground state
term symbol In quantum mechanics, the term symbol is an abbreviated description of the (total) angular momentum quantum numbers in a multi-electron atom (however, even a single electron can be described by a term symbol). Each energy level of an atom with a giv ...
2D3/2), per the
Aufbau principle The aufbau principle , from the German ''Aufbauprinzip'' (building-up principle), also called the aufbau rule, states that in the ground state of an atom or ion, electrons fill subshells of the lowest available energy, then they fill subshells ...
and conforming to the ef145d16s2 configuration of lawrencium's lighter homolog lutetium. But the next year, calculations were published that questioned this prediction, instead expecting an anomalous nf147s27p1 configuration. Though early calculations gave conflicting results, more recent studies and calculations confirm the s2p suggestion. 1974 relativistic calculations concluded that the energy difference between the two configurations was small and that it was uncertain which was the ground state. Later 1995 calculations concluded that the s2p configuration should be energetically favored, because the spherical s and p1/2 orbitals are nearest to the
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
and thus move quickly enough that their relativistic mass increases significantly. In 1988, a team of scientists led by Eichler calculated that lawrencium's enthalpy of adsorption on metal sources would differ enough depending on its electron configuration that it would be feasible to carry out experiments to exploit this fact to measure lawrencium's electron configuration. The s2p configuration was expected to be more volatile than the s2d configuration, and be more similar to that of the
p-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
element
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, ...
. No evidence for lawrencium being volatile was obtained and the lower limit for the enthalpy of adsorption of lawrencium on
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical f ...
or
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
was significantly higher than the estimated value for the s2p configuration. In 2015, the first ionization energy of lawrencium was measured, using the isotope 256Lr. The measured value, , agreed very well with the relativistic theoretical prediction of 4.963(15) eV, and also provided a first step into measuring the first ionization energies of the
transactinide Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the l ...
s. This value is the lowest among all the lanthanides and actinides, and supports the s2p configuration as the 7p1/2 electron is expected to be only weakly bound. As ionisation energies generally increase left to right in the f-block, this low value suggests that lutetium and lawrencium belong in the d-block (whose trend they follow) and not the f-block, and hence that they are the true heavier congeners of
scandium Scandium is a chemical element with the symbol Sc and atomic number 21. It is a silvery-white metallic d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the Lanthanides. It was discovered in ...
and
yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in co ...
rather than
lanthanum Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between l ...
and
actinium Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name ''emanium''; the element got its name by being wrongly identified with a substance ...
. Although some
alkali metal The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
-like behaviour has been predicted, adsorption experiments suggest that lawrencium is trivalent like scandium and yttrium, not monovalent like the alkali metals. A lower limit on lawrencium's second ionization energy (>13.3 eV) was experimentally found in 2021. Even though s2p is now known to be the ground-state configuration of the lawrencium atom, ds2 should be a low-lying excited-state configuration, with an excitation energy variously calculated as 0.156 eV, 0.165 eV, or 0.626 eV. As such lawrencium may still be considered to be a d-block element, albeit with an anomalous electron configuration (like
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hard ...
or
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
), as its chemical behaviour matches expectations for a heavier analogue of lutetium.


Isotopes

Fourteen isotopes of lawrencium are known, with
mass number The mass number (symbol ''A'', from the German word ''Atomgewicht'' tomic weight, also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is approxima ...
251–262, 264, and 266; all are radioactive. Two nuclear isomers are known, with mass numbers 251 and 253. The longest-lived isotope, 266Lr, has a half-life of about ten hours and is one of the longest-lived
superheavy SuperHeavy was a one-off supergroup project consisting of Mick Jagger, Joss Stone, Dave Stewart, A. R. Rahman, and Damian Marley. Stone and Stewart have collaborated in the past with Jagger. Jagger said of the band, "We wanted a convergence ...
isotopes known to date. However, shorter-lived isotopes are usually used in chemical experiments because 266Lr currently can only be produced as a final
decay product In nuclear physics, a decay product (also known as a daughter product, daughter isotope, radio-daughter, or daughter nuclide) is the remaining nuclide left over from radioactive decay. Radioactive decay often proceeds via a sequence of steps ( ...
of even heavier and harder-to-make elements: it was discovered in 2014 in the
decay chain In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". Most radioisotopes do not decay dire ...
of 294 Ts. 256Lr (half-life 27 seconds) was used in the first chemical studies on lawrencium: currently, the longer-lived 260Lr (half-life 2.7 minutes) is usually used for this purpose. After 266Lr, the longest-lived isotopes are 264Lr (), 262Lr (3.6 h), and 261Lr (44 min). All other known lawrencium isotopes have half-lives under 5 minutes, and the shortest-lived of them (251Lr) has a half-life of 24.4 milliseconds. The half-lives of lawrencium isotopes mostly increase smoothly from 251Lr to 266Lr, with a dip from 257Lr to 259Lr.


Preparation and purification

Most isotopes of lawrencium can be produced by bombarding actinide (
americium Americium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was n ...
to
einsteinium Einsteinium is a synthetic element with the symbol Es and atomic number 99. Einsteinium is a member of the actinide series and it is the seventh transuranium element. It was named in honor of Albert Einstein. Einsteinium was discovered as a com ...
) targets with light ions (from
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has t ...
to neon). The two most important isotopes, 256Lr and 260Lr, can be respectively produced by bombarding
californium Californium is a radioactive chemical element with the symbol Cf and atomic number 98. The element was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding c ...
-249 with 70 MeV
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the '' boron group'' it has t ...
-11 ions (producing lawrencium-256 and four
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the atomic nucleus, nuclei of atoms. Since protons and ...
s) and by bombarding
berkelium Berkelium is a transuranic radioactive chemical element with the symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence B ...
-249 with
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
-18 (producing lawrencium-260, an alpha particle, and three neutrons). The two heaviest and longest-lived known isotopes, 264Lr and 266Lr, can only be produced at much lower yields as decay products of dubnium, whose progenitors are isotopes of moscovium and tennessine. Both 256Lr and 260Lr have half-lives too short to allow a complete chemical purification process. Early experiments with 256Lr therefore used rapid solvent extraction, with the
chelating agent Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central metal atom. These ligands a ...
thenoyltrifluoroacetone (TTA) dissolved in methyl isobutyl ketone (MIBK) as the organic phase, and with the
aqueous phase An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would b ...
being buffered
acetate An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called ...
solutions. Ions of different charge (+2, +3, or +4) will then extract into the organic phase under different pH ranges, but this method will not separate the trivalent actinides and thus 256Lr must be identified by its emitted 8.24 MeV alpha particles. More recent methods have allowed rapid selective elution with α-HIB to take place in enough time to separate out the longer-lived isotope 260Lr, which can be removed from the catcher foil with 0.05 M 
hydrochloric acid Hydrochloric acid, also known as muriatic acid, is an aqueous solution of hydrogen chloride. It is a colorless solution with a distinctive pungent smell. It is classified as a strong acid. It is a component of the gastric acid in the dige ...
.


See also


Notes


References


Bibliography

* * * * * *


External links

*
Los Alamos National Laboratory's Chemistry Division: Periodic Table – Lawrencium


at '' The Periodic Table of Videos'' (University of Nottingham) {{Authority control Chemical elements Transition metals Actinides Synthetic elements Chemical elements with hexagonal close-packed structure