HOME

TheInfoList



OR:

Xylem is one of the two types of transport tissue in
vascular plant Vascular plants (), also called tracheophytes () or collectively Tracheophyta (), form a large group of land plants ( accepted known species) that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They ...
s, the other being
phloem Phloem (, ) is the living biological tissue, tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as ''photosynthates'', in particular the sugar sucrose, to the rest of the plant. This tran ...
. The basic function of xylem is to transport
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
from roots to stems and leaves, but it also transports
nutrients A nutrient is a substance used by an organism to survive, grow, and reproduce. The requirement for dietary nutrient intake applies to animals, plants, fungi, and protists. Nutrients can be incorporated into cells for metabolic purposes or excre ...
. The word ''xylem'' is derived from the
Ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic peri ...
word (''xylon''), meaning "wood"; the best-known xylem tissue is
wood Wood is a porous and fibrous structural tissue found in the stems and roots of trees and other woody plants. It is an organic materiala natural composite of cellulose fibers that are strong in tension and embedded in a matrix of lignin th ...
, though it is found throughout a plant. The term was introduced by
Carl Nägeli Carl Wilhelm von Nägeli (26 or 27 March 1817 – 10 May 1891) was a Swiss botanist. He studied cell division and pollination but became known as the man who discouraged Gregor Mendel from further work on genetics. He rejected natural selection ...
in 1858.


Structure

The most distinctive xylem
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s are the long tracheary elements that transport water.
Tracheid A tracheid is a long and tapered lignified cell in the xylem of vascular plants. It is a type of conductive cell called a tracheary element. Angiosperms use another type of tracheary element, called vessel elements, to transport water through th ...
s and
vessel element A vessel element or vessel member (also called trachea or xylem vessel) is one of the cell types found in xylem, the water conducting tissue of plants. Vessel elements are typically found in angiosperms (flowering plants) but absent from most gy ...
s are distinguished by their shape; vessel elements are shorter, and are connected together into long tubes that are called ''vessels''. Xylem also contains two other type of cells: parenchyma and fibers. Xylem can be found: * in
vascular bundle A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will inc ...
s, present in non-woody plants and non-woody parts of woody plants * in secondary xylem, laid down by a
meristem The meristem is a type of tissue found in plants. It consists of undifferentiated cells (meristematic cells) capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells conti ...
called the
vascular cambium The vascular cambium is the main growth tissue in the stems and roots of many plants, specifically in dicots such as buttercups and oak trees, gymnosperms such as pine trees, as well as in certain other vascular plants. It produces secondary xyle ...
in woody plants * as part of a stelar arrangement not divided into bundles, as in many
fern A fern (Polypodiopsida or Polypodiophyta ) is a member of a group of vascular plants (plants with xylem and phloem) that reproduce via spores and have neither seeds nor flowers. The polypodiophytes include all living pteridophytes except t ...
s. In transitional stages of plants with
secondary growth In botany, secondary growth is the growth that results from cell division in the cambia or lateral meristems and that causes the stems and roots to thicken, while primary growth is growth that occurs as a result of cell division at the tips of ...
, the first two categories are not mutually exclusive, although usually a vascular bundle will contain ''primary xylem'' only. The branching pattern exhibited by xylem follows
Murray's law In biophysical fluid dynamics, Murray's law is a potential relationship between radii at junctions in a network of fluid-carrying tubular pipes. Its simplest version proposes that whenever a branch of radius r splits into two branches of radii ...
.


Primary and secondary xylem

Primary xylem is formed during primary growth from
procambium The meristem is a type of tissue found in plants. It consists of undifferentiated cells (meristematic cells) capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells conti ...
. It includes protoxylem and metaxylem. Metaxylem develops after the protoxylem but before secondary xylem. Metaxylem has wider vessels and tracheids than protoxylem. Secondary xylem is formed during secondary growth from
vascular cambium The vascular cambium is the main growth tissue in the stems and roots of many plants, specifically in dicots such as buttercups and oak trees, gymnosperms such as pine trees, as well as in certain other vascular plants. It produces secondary xyle ...
. Although secondary xylem is also found in members of the
gymnosperm The gymnosperms ( lit. revealed seeds) are a group of seed-producing plants that includes conifers, cycads, ''Ginkgo'', and gnetophytes, forming the clade Gymnospermae. The term ''gymnosperm'' comes from the composite word in el, Î³Ï…Î¼Î½ÏŒÏ ...
groups
Gnetophyta Gnetophyta () is a division of plants (alternatively considered the subclass Gnetidae or order Gnetales), grouped within the gymnosperms (which also includes conifers, cycads, and ginkgos), that consists of some 70 species across the three rel ...
and
Ginkgophyta Ginkgoales are a gymnosperm order containing only one extant species: ''Ginkgo biloba'', the ginkgo tree. It is monotypic, (the only taxon) within the class Ginkgoopsida, which itself is monotypic within the division Ginkgophyta . The order inclu ...
and to a lesser extent in members of the
Cycadophyta Cycads are seed plants that typically have a stout and woody (ligneous) trunk (botany), trunk with a crown (botany), crown of large, hard, stiff, evergreen and (usually) pinnate leaves. The species are dioecious, that is, individual plants o ...
, the two main groups in which secondary xylem can be found are: # conifers (''Coniferae''): there are approximately 600 known species of conifers. All species have secondary xylem, which is relatively uniform in structure throughout this group. Many conifers become tall trees: the secondary xylem of such trees is used and marketed as softwood. #
angiosperms Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (), commonly called angiosperms. The term "angiosperm" is derived from the Greek words ('container, vessel') and ('seed'), and refers to those plants th ...
(''Angiospermae''): there are approximately 250,000 known species of angiosperms. Within this group secondary xylem is rare in the
monocots Monocotyledons (), commonly referred to as monocots, ( Lilianae '' sensu'' Chase & Reveal) are grass and grass-like flowering plants (angiosperms), the seeds of which typically contain only one embryonic leaf, or cotyledon. They constitute one of ...
. Many non-monocot angiosperms become trees, and the secondary xylem of these is used and marketed as
hardwood Hardwood is wood from dicot trees. These are usually found in broad-leaved temperate and tropical forests. In temperate and boreal latitudes they are mostly deciduous, but in tropics and subtropics mostly evergreen. Hardwood (which comes from ...
.


Main function – upwards water transport

The xylem, vessels and tracheids of the roots, stems and leaves are interconnected to form a continuous system of water-conducting channels reaching all parts of the plants. The system transports water and soluble mineral nutrients from the roots throughout the plant. It is also used to replace water lost during
transpiration Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth ...
and photosynthesis. Xylem
sap Sap is a fluid transported in xylem cells (vessel elements or tracheids) or phloem sieve tube elements of a plant. These cells transport water and nutrients throughout the plant. Sap is distinct from latex, resin, or cell sap; it is a separ ...
consists mainly of water and inorganic ions, although it can also contain a number of organic chemicals as well. The transport is passive, not powered by energy spent by the tracheary elements themselves, which are dead by maturity and no longer have living contents. Transporting sap upwards becomes more difficult as the height of a plant increases and upwards transport of water by xylem is considered to limit the maximum height of trees. Three phenomena cause xylem sap to flow: * Pressure flow hypothesis: Sugars produced in the leaves and other green tissues are kept in the phloem system, creating a solute pressure differential versus the xylem system carrying a far lower load of solutes- water and minerals. The phloem pressure can rise to several MPa, far higher than atmospheric pressure. Selective inter-connection between these systems allows this high solute concentration in the phloem to draw xylem fluid upwards by negative pressure. *
Transpiration Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth ...
al pull: Similarly, the
evaporation Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidi ...
of
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
from the surfaces of
mesophyll A leaf ( : leaves) is any of the principal appendages of a vascular plant stem, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, s ...
cells to the atmosphere also creates a negative pressure at the top of a plant. This causes millions of minute menisci to form in the mesophyll cell wall. The resulting surface tension causes a negative pressure or
tension Tension may refer to: Science * Psychological stress * Tension (physics), a force related to the stretching of an object (the opposite of compression) * Tension (geology), a stress which stretches rocks in two opposite directions * Voltage or el ...
in the xylem that pulls the water from the roots and soil. *
Root pressure Root pressure is the transverse osmotic pressure within the cells of a root system that causes sap to rise through a plant stem to the leaves. Root pressure occurs in the xylem of some vascular plants when the soil moisture level is high either ...
: If the
water potential Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and mat ...
of the root cells is more negative than that of the
soil Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former te ...
, usually due to high concentrations of
solute In chemistry, a solution is a special type of homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent. If the attractive forces between the solvent ...
, water can move by
osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region o ...
into the root from the soil. This causes a positive pressure that forces sap up the xylem towards the leaves. In some circumstances, the sap will be forced from the leaf through a
hydathode A hydathode is a type of pore, commonly found in angiosperms, that secretes water through pores in the epidermis or leaf margin, typically at the tip of a marginal tooth or serration. Hydathodes occur in the leaves of submerged aquatic plants suc ...
in a phenomenon known as
guttation Guttation is the exudation of drops of xylem sap on the tips or edges of leaves of some vascular plants, such as grasses, and a number of fungi, which are not plants but were previously categorized as such and studied as part of botany. Guttation ...
. Root pressure is highest in the morning before the stomata open and allow transpiration to begin. Different plant species can have different root pressures even in a similar environment; examples include up to 145 kPa in ''
Vitis riparia ''Vitis riparia'' Michx, with common names riverbank grape or frost grape, is a vine indigenous to North America. As a climbing or trailing vine, it is widely distributed across central and eastern Canada and the central and northeastern parts ...
'' but around zero in '' Celastrus orbiculatus''. The primary force that creates the
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
movement of water upwards in plants is the adhesion between the water and the surface of the xylem conduits. Capillary action provides the force that establishes an equilibrium configuration, balancing gravity. When transpiration removes water at the top, the flow is needed to return to the equilibrium. Transpirational pull results from the evaporation of water from the surfaces of
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s in the
leaves A leaf (plural, : leaves) is any of the principal appendages of a vascular plant plant stem, stem, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", wh ...
. This evaporation causes the surface of the water to recess into the
pore Pore may refer to: Biology Animal biology and microbiology * Sweat pore, an anatomical structure of the skin of humans (and other mammals) used for secretion of sweat * Hair follicle, an anatomical structure of the skin of humans (and other m ...
s of the
cell wall A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mech ...
. By
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
, the water forms concave menisci inside the pores. The high surface tension of water pulls the
concavity In calculus, the second derivative, or the second order derivative, of a function is the derivative of the derivative of . Roughly speaking, the second derivative measures how the rate of change of a quantity is itself changing; for example, ...
outwards, generating enough
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
to lift water as high as a hundred meters from ground level to a
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are ...
's highest branches. Transpirational pull requires that the vessels transporting the water be very small in diameter; otherwise, cavitation would break the water column. And as water
evaporates Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. High concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidi ...
from leaves, more is drawn up through the plant to replace it. When the water pressure within the xylem reaches extreme levels due to low water input from the roots (if, for example, the soil is dry), then the gases come out of solution and form a bubble â€“ an
embolism An embolism is the lodging of an embolus, a blockage-causing piece of material, inside a blood vessel. The embolus may be a blood clot (thrombus), a fat globule (fat embolism), a bubble of air or other gas ( gas embolism), amniotic fluid (am ...
forms, which will spread quickly to other adjacent cells, unless bordered pits are present (these have a plug-like structure called a torus, that seals off the opening between adjacent cells and stops the embolism from spreading). Even after an embolism has occurred, plants are able to refill the xylem and restore the functionality.


Cohesion-tension theory

The ''cohesion-tension theory'' is a
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be ...
of
intermolecular attraction An intermolecular force (IMF) (or secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. a ...
that explains the process of
water Water (chemical formula ) is an inorganic, transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living organisms (in which it acts as a ...
flow upwards (against the force of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
) through the xylem of
plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclud ...
s. It was proposed in 1894 by
John Joly John Joly FRS (1 November 1857 – 8 December 1933) was an Irish physicist and professor of geology at the University of Dublin, known for his development of radiotherapy in the treatment of cancer. He is also known for developing techniques to ...
and
Henry Horatio Dixon Henry Horatio Dixon FRS (19 May 1869, Dublin – 20 December 1953, Dublin) was a plant biologist and professor at Trinity College Dublin. Along with John Joly, he put forward the cohesion-tension theory of water and mineral movement in plants. ...
. Despite numerous objections, this is the most widely accepted theory for the transport of water through a plant's vascular system based on the classical research of Dixon-Joly (1894), Eugen Askenasy (1845–1903) (1895), and Dixon (1914,1924). Water is a
polar molecule In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar ...
. When two water molecules approach one another, the slightly negatively charged
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
atom of one forms a
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
with a slightly positively charged
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
atom in the other. This attractive force, along with other
intermolecular force An intermolecular force (IMF) (or secondary force) is the force that mediates interaction between molecules, including the electromagnetic forces of attraction or repulsion which act between atoms and other types of neighbouring particles, e.g. ...
s, is one of the principal factors responsible for the occurrence of surface tension in liquid water. It also allows plants to draw water from the root through the xylem to the leaf. Water is constantly lost through transpiration from the leaf. When one water molecule is lost another is pulled along by the processes of cohesion and tension. Transpiration pull, utilizing
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
and the inherent surface tension of water, is the primary mechanism of water movement in plants. However, it is not the only mechanism involved. Any use of water in leaves forces water to move into them.
Transpiration Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth ...
in leaves creates tension (differential pressure) in the cell walls of
mesophyll A leaf ( : leaves) is any of the principal appendages of a vascular plant stem, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, s ...
cells. Because of this tension, water is being pulled up from the roots into the leaves, helped by cohesion (the pull between individual water molecules, due to hydrogen bonds) and
adhesion Adhesion is the tendency of dissimilar particles or surfaces to cling to one another ( cohesion refers to the tendency of similar or identical particles/surfaces to cling to one another). The forces that cause adhesion and cohesion can b ...
(the stickiness between water molecules and the
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are ...
cell walls of plants). This mechanism of water flow works because of
water potential Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and mat ...
(water flows from high to low potential), and the rules of simple
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
. Over the past century, there has been a great deal of research regarding the mechanism of xylem sap transport; today, most plant scientists continue to agree that the ''cohesion-tension theory'' best explains this process, but multiforce theories that hypothesize several alternative mechanisms have been suggested, including longitudinal cellular and xylem osmotic pressure
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
s, axial potential gradients in the vessels, and gel- and gas-bubble-supported interfacial gradients.


Measurement of pressure

Until recently, the differential pressure (suction) of transpirational pull could only be measured indirectly, by applying external pressure with a
pressure bomb A pressure bomb, pressure chamber, or Scholander bomb is an instrument that can measure the approximate water potential of plant tissues. A leaf and petiole or stem segment is placed inside a sealed chamber. Pressurized gas (normally compresse ...
to counteract it. When the technology to perform direct measurements with a pressure probe was developed, there was initially some doubt about whether the classic theory was correct, because some workers were unable to demonstrate negative pressures. More recent measurements do tend to validate the classic theory, for the most part. Xylem transport is driven by a combination of transpirational pull from above and
root pressure Root pressure is the transverse osmotic pressure within the cells of a root system that causes sap to rise through a plant stem to the leaves. Root pressure occurs in the xylem of some vascular plants when the soil moisture level is high either ...
from below, which makes the interpretation of measurements more complicated.


Evolution

Xylem appeared early in the history of terrestrial plant life. Fossil plants with anatomically preserved xylem are known from the
Silurian The Silurian ( ) is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at million years ago ( Mya), to the beginning of the Devonian Period, Mya. The Silurian is the shortest period of the Paleozo ...
(more than 400 million years ago), and trace fossils resembling individual xylem cells may be found in earlier
Ordovician The Ordovician ( ) is a geologic period and System (geology), system, the second of six periods of the Paleozoic Era (geology), Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period million years ago (Mya) to the start ...
rocks. The earliest true and recognizable xylem consists of
tracheids A tracheid is a long and tapered lignified cell in the xylem of vascular plants. It is a type of conductive cell called a tracheary element. Angiosperms use another type of tracheary element, called vessel elements, to transport water through t ...
with a helical-annular reinforcing layer added to the
cell wall A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mech ...
. This is the only type of xylem found in the earliest vascular plants, and this type of cell continues to be found in the ''protoxylem'' (first-formed xylem) of all living groups of vascular plants. Several groups of plants later developed pitted tracheid cells independently through
convergent evolution Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last com ...
. In living plants, pitted tracheids do not appear in development until the maturation of the ''metaxylem'' (following the ''protoxylem''). In most plants, pitted
tracheid A tracheid is a long and tapered lignified cell in the xylem of vascular plants. It is a type of conductive cell called a tracheary element. Angiosperms use another type of tracheary element, called vessel elements, to transport water through th ...
s function as the primary transport cells. The other type of vascular element, found in angiosperms, is the
vessel element A vessel element or vessel member (also called trachea or xylem vessel) is one of the cell types found in xylem, the water conducting tissue of plants. Vessel elements are typically found in angiosperms (flowering plants) but absent from most gy ...
. Vessel elements are joined end to end to form vessels in which water flows unimpeded, as in a pipe. The presence of xylem vessels (also called trachea) is considered to be one of the key innovations that led to the success of the
angiosperms Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (), commonly called angiosperms. The term "angiosperm" is derived from the Greek words ('container, vessel') and ('seed'), and refers to those plants th ...
. However, the occurrence of vessel elements is not restricted to angiosperms, and they are absent in some archaic or "basal" lineages of the angiosperms: (e.g.,
Amborellaceae ''Amborella'' is a monotypic genus of understory shrubs or small trees endemic to the main island, Grande Terre, of New Caledonia in the southwest Pacific Ocean. The genus is the only member of the family Amborellaceae and the order Amborellale ...
, Tetracentraceae,
Trochodendraceae Trochodendraceae is the only family of flowering plants in the order Trochodendrales. It comprises two extant genera, each with a single species along with up to five additional extinct genera and a number of extinct species. The living speci ...
, and
Winteraceae Winteraceae is a primitive family of tropical trees and shrubs including 93 species in five genera. It is of particular interest because it is such a primitive angiosperm family, distantly related to Magnoliaceae, though it has a much more s ...
), and their secondary xylem is described by
Arthur Cronquist Arthur John Cronquist (March 19, 1919 – March 22, 1992) was an American biologist, botanist and a specialist on Compositae. He is considered one of the most influential botanists of the 20th century, largely due to his formulation of the Cr ...
as "primitively vesselless". Cronquist considered the vessels of ''
Gnetum ''Gnetum'' is a genus of gymnosperms, the sole genus in the family Gnetaceae within the Gnetophyta. They are tropical evergreen trees, shrubs and lianas. Unlike other gymnosperms, they possess vessel elements in the xylem. Some species have bee ...
'' to be convergent with those of angiosperms. Whether the absence of vessels in basal angiosperms is a primitive condition is contested, the alternative hypothesis states that vessel elements originated in a precursor to the angiosperms and were subsequently lost. To photosynthesize, plants must absorb from the atmosphere. However, this comes at a price: while stomata are open to allow to enter, water can evaporate. Water is lost much faster than is absorbed, so plants need to replace it, and have developed systems to transport water from the moist soil to the site of photosynthesis. Early plants sucked water between the walls of their cells, then evolved the ability to control water loss (and acquisition) through the use of stomata. Specialized water transport tissues soon evolved in the form of hydroids, tracheids, then secondary xylem, followed by an endodermis and ultimately vessels. The high levels of Silurian-Devonian times, when plants were first colonizing land, meant that the need for water was relatively low. As was withdrawn from the atmosphere by plants, more water was lost in its capture, and more elegant transport mechanisms evolved. As water transport mechanisms, and waterproof cuticles, evolved, plants could survive without being continually covered by a film of water. This transition from
poikilohydry Poikilohydry is the lack of ability (structural or functional mechanism) to maintain and/or regulate water content to achieve homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady in ...
to homoiohydry opened up new potential for colonization. Plants then needed a robust internal structure that held long narrow channels for transporting water from the soil to all the different parts of the above-soil plant, especially to the parts where photosynthesis occurred. During the Silurian, was readily available, so little water needed expending to acquire it. By the end of the Carboniferous, when levels had lowered to something approaching today's, around 17 times more water was lost per unit of uptake. However, even in these "easy" early days, water was at a premium, and had to be transported to parts of the plant from the wet soil to avoid
desiccation Desiccation () is the state of extreme dryness, or the process of extreme drying. A desiccant is a hygroscopic (attracts and holds water) substance that induces or sustains such a state in its local vicinity in a moderately sealed container. ...
. This early water transport took advantage of the ''cohesion-tension'' mechanism inherent in water. Water has a tendency to diffuse to areas that are drier, and this process is accelerated when water can be
wick Wick most often refers to: * Capillary action ("wicking") ** Candle wick, the cord used in a candle or oil lamp ** Solder wick, a copper-braided wire used to desolder electronic contacts Wick or WICK may also refer to: Places and placename ...
ed along a fabric with small spaces. In small passages, such as that between the plant cell walls (or in tracheids), a column of water behaves like rubber â€“ when molecules evaporate from one end, they pull the molecules behind them along the channels. Therefore, transpiration alone provided the driving force for water transport in early plants. However, without dedicated transport vessels, the cohesion-tension mechanism cannot transport water more than about 2 cm, severely limiting the size of the earliest plants. This process demands a steady supply of water from one end, to maintain the chains; to avoid exhausting it, plants developed a waterproof cuticle. Early cuticle may not have had pores but did not cover the entire plant surface, so that gas exchange could continue. However, dehydration at times was inevitable; early plants cope with this by having a lot of water stored between their cell walls, and when it comes to it sticking out the tough times by putting life "on hold" until more water is supplied. To be free from the constraints of small size and constant moisture that the parenchymatic transport system inflicted, plants needed a more efficient water transport system. During the early Silurian, they developed specialized cells, which were
lignified Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity ...
(or bore similar chemical compounds) to avoid implosion; this process coincided with cell death, allowing their innards to be emptied and water to be passed through them. These wider, dead, empty cells were a million times more conductive than the inter-cell method, giving the potential for transport over longer distances, and higher diffusion rates. The earliest macrofossils to bear water-transport tubes are Silurian plants placed in the genus ''
Cooksonia ''Cooksonia'' is an extinct group of primitive land plants, treated as a genus, although probably not monophyletic. The earliest ''Cooksonia'' date from the middle of the Silurian (the Wenlock epoch); the group continued to be an important comp ...
''. The early Devonian pretracheophytes ''
Aglaophyton ''Aglaophyton major'' (or more correctly ''Aglaophyton majus'') was the sporophyte generation of a diplohaplontic, pre-vascular, axial, free-sporing land plant of the Lower Devonian (Pragian stage, around ). It had anatomical features intermedia ...
'' and ''
Horneophyton ''Horneophyton'' is an extinct early plant which may form a "missing link" between the hornworts and the Rhyniopsida. It is a member of the class Horneophytopsida. ''Horneophyton'' is among the most abundant fossil organisms found in the Rhynie c ...
'' have structures very similar to the
hydroids Hydroids are a life stage for most animals of the class Hydrozoa, small predators related to jellyfish. Some hydroids such as the freshwater '' Hydra'' are solitary, with the polyp attached directly to the substrate. When these produce buds ...
of modern mosses. Plants continued to innovate new ways of reducing the resistance to flow within their cells, thereby increasing the efficiency of their water transport. Bands on the walls of tubes, in fact apparent from the early Silurian onwards, are an early improvisation to aid the easy flow of water. Banded tubes, as well as tubes with pitted ornamentation on their walls, were lignified and, when they form single celled conduits, are considered to be ''tracheids''. These, the "next generation" of transport cell design, have a more rigid structure than hydroids, allowing them to cope with higher levels of water pressure. Tracheids may have a single evolutionary origin, possibly within the hornworts, uniting all tracheophytes (but they may have evolved more than once). Water transport requires regulation, and dynamic control is provided by stomata. By adjusting the amount of gas exchange, they can restrict the amount of water lost through transpiration. This is an important role where water supply is not constant, and indeed stomata appear to have evolved before tracheids, being present in the non-vascular hornworts. An
endodermis The endodermis is the central, innermost layer of cortex in land plants. It is a cylinder of compact living cells, the radial walls of which are impregnated with hydrophobic substances (Casparian strip) to restrict apoplastic flow of water to th ...
probably evolved during the Silu-Devonian, but the first fossil evidence for such a structure is Carboniferous. This structure in the roots covers the water transport tissue and regulates ion exchange (and prevents unwanted pathogens etc. from entering the water transport system). The endodermis can also provide an upwards pressure, forcing water out of the roots when transpiration is not enough of a driver. Once plants had evolved this level of controlled water transport, they were truly homoiohydric, able to extract water from their environment through root-like organs rather than relying on a film of surface moisture, enabling them to grow to much greater size. As a result of their independence from their surroundings, they lost their ability to survive desiccation â€“ a costly trait to retain. During the Devonian, maximum xylem diameter increased with time, with the minimum diameter remaining pretty constant. By the middle Devonian, the tracheid diameter of some plant lineages ( Zosterophyllophytes) had plateaued. Wider tracheids allow water to be transported faster, but the overall transport rate depends also on the overall cross-sectional area of the xylem bundle itself. The increase in vascular bundle thickness further seems to correlate with the width of plant axes, and plant height; it is also closely related to the appearance of leaves and increased stomatal density, both of which would increase the demand for water. While wider tracheids with robust walls make it possible to achieve higher water transport tensions, this increases the likelihood of cavitation. Cavitation occurs when a bubble of air forms within a vessel, breaking the bonds between chains of water molecules and preventing them from pulling more water up with their cohesive tension. A tracheid, once cavitated, cannot have its embolism removed and return to service (except in a few advanced angiosperms which have developed a mechanism of doing so). Therefore, it is well worth plants' while to avoid cavitation occurring. For this reason, pits in tracheid walls have very small diameters, to prevent air entering and allowing bubbles to nucleate. Freeze-thaw cycles are a major cause of cavitation. Damage to a tracheid's wall almost inevitably leads to air leaking in and cavitation, hence the importance of many tracheids working in parallel. Once cavitation has occurred, plants have a range of mechanisms to contain the damage. Small pits link adjacent conduits to allow fluid to flow between them, but not air â€“ although these pits, which prevent the spread of embolism, are also a major cause of them. These pitted surfaces further reduce the flow of water through the xylem by as much as 30%. The diversification of xylem strand shapes with tracheid network topologies increasingly resistant to the spread of embolism likely facilitated increases in plant size and the colonization of drier habitats during the Devonian radiation. Conifers, by the Jurassic, developed bordered pits had valve-like structures to isolate cavitated elements. These torus-margo structures have an impermeable disc (torus) suspended by a permeable membrane (margo) between two adjacent pores. When a tracheid on one side depressurizes, the disc is sucked into the pore on that side, and blocks further flow. Other plants simply tolerate cavitation. For instance, oaks grow a ring of wide vessels at the start of each spring, none of which survive the winter frosts. Maples use root pressure each spring to force sap upwards from the roots, squeezing out any air bubbles. Growing to height also employed another trait of tracheids â€“ the support offered by their lignified walls. Defunct tracheids were retained to form a strong, woody stem, produced in most instances by a secondary xylem. However, in early plants, tracheids were too mechanically vulnerable, and retained a central position, with a layer of tough
sclerenchyma The ground tissue of plants includes all tissues that are neither dermal nor vascular. It can be divided into three types based on the nature of the cell walls. # Parenchyma cells have thin primary walls and usually remain alive after they beco ...
on the outer rim of the stems. Even when tracheids do take a structural role, they are supported by sclerenchymatic tissue. Tracheids end with walls, which impose a great deal of resistance on flow; vessel members have perforated end walls, and are arranged in series to operate as if they were one continuous vessel. The function of end walls, which were the default state in the Devonian, was probably to avoid
embolism An embolism is the lodging of an embolus, a blockage-causing piece of material, inside a blood vessel. The embolus may be a blood clot (thrombus), a fat globule (fat embolism), a bubble of air or other gas ( gas embolism), amniotic fluid (am ...
s. An embolism is where an air bubble is created in a tracheid. This may happen as a result of freezing, or by gases dissolving out of solution. Once an embolism is formed, it usually cannot be removed (but see later); the affected cell cannot pull water up, and is rendered useless. End walls excluded, the tracheids of prevascular plants were able to operate under the same hydraulic conductivity as those of the first vascular plant, ''Cooksonia''. The size of tracheids is limited as they comprise a single cell; this limits their length, which in turn limits their maximum useful diameter to 80 Î¼m. Conductivity grows with the fourth power of diameter, so increased diameter has huge rewards; ''vessel elements'', consisting of a number of cells, joined at their ends, overcame this limit and allowed larger tubes to form, reaching diameters of up to 500 Î¼m, and lengths of up to 10 m. Vessels first evolved during the dry, low periods of the late Permian, in the horsetails, ferns and
Selaginellales ''Selaginella'' is the sole genus of vascular plants in the family Selaginellaceae, the spikemosses or lesser clubmosses. This family is distinguished from Lycopodiaceae (the clubmosses) by having scale-leaves bearing a ligule and by having ...
independently, and later appeared in the mid Cretaceous in angiosperms and gnetophytes. Vessels allow the same cross-sectional area of wood to transport around a hundred times more water than tracheids! This allowed plants to fill more of their stems with structural fibers, and also opened a new niche to
vine A vine (Latin ''vīnea'' "grapevine", "vineyard", from ''vīnum'' "wine") is any plant with a growth habit of trailing or scandent (that is, climbing) stems, lianas or runners. The word ''vine'' can also refer to such stems or runners themselv ...
s, which could transport water without being as thick as the tree they grew on. Despite these advantages, tracheid-based wood is a lot lighter, thus cheaper to make, as vessels need to be much more reinforced to avoid cavitation.


Development

Xylem development can be described by four terms: ''centrarch, exarch, endarch'' and ''mesarch''. As it develops in young plants, its nature changes from ''protoxylem'' to ''metaxylem'' (i.e. from ''first xylem'' to ''after xylem''). The patterns in which protoxylem and metaxylem are arranged is important in the study of plant morphology.


Protoxylem and metaxylem

As a young
vascular plant Vascular plants (), also called tracheophytes () or collectively Tracheophyta (), form a large group of land plants ( accepted known species) that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They ...
grows, one or more strands of primary xylem form in its stems and roots. The first xylem to develop is called 'protoxylem'. In appearance protoxylem is usually distinguished by narrower vessels formed of smaller cells. Some of these cells have walls which contain thickenings in the form of rings or helices. Functionally, protoxylem can extend: the cells are able to grow in size and develop while a stem or root is elongating. Later, 'metaxylem' develops in the strands of xylem. Metaxylem vessels and cells are usually larger; the cells have thickenings which are typically either in the form of ladderlike transverse bars (scalariform) or continuous sheets except for holes or pits (pitted). Functionally, metaxylem completes its development after elongation ceases when the cells no longer need to grow in size.


Patterns of protoxylem and metaxylem

There are four main patterns to the arrangement of protoxylem and metaxylem in stems and roots. * ''Centrarch'' refers to the case in which the primary xylem forms a single cylinder in the center of the stem and develops from the center outwards. The protoxylem is thus found in the central core and the metaxylem in a cylinder around it. This pattern was common in early land plants, such as "
rhyniophyte The rhyniophytes are a group of extinct early vascular plants that are considered to be similar to the genus '' Rhynia'', found in the Early Devonian (around ). Sources vary in the name and rank used for this group, some treating it as the class ...
s", but is not present in any living plants. The other three terms are used where there is more than one strand of primary xylem. * ''Exarch'' is used when there is more than one strand of primary xylem in a stem or root, and the xylem develops from the outside inwards towards the center, i.e. centripetally. The metaxylem is thus closest to the center of the stem or root and the protoxylem closest to the periphery. The roots of
vascular plant Vascular plants (), also called tracheophytes () or collectively Tracheophyta (), form a large group of land plants ( accepted known species) that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They ...
s are normally considered to have exarch development. * ''Endarch'' is used when there is more than one strand of primary xylem in a stem or root, and the xylem develops from the inside outwards towards the periphery, i.e. centrifugally. The protoxylem is thus closest to the center of the stem or root and the metaxylem closest to the periphery. The stems of
seed plant A spermatophyte (; ), also known as phanerogam (taxon Phanerogamae) or phaenogam (taxon Phaenogamae), is any plant that produces seeds, hence the alternative name seed plant. Spermatophytes are a subset of the embryophytes or land plants. They inc ...
s typically have endarch development. * ''Mesarch'' is used when there is more than one strand of primary xylem in a stem or root, and the xylem develops from the middle of a strand in both directions. The metaxylem is thus on both the peripheral and central sides of the strand with the protoxylem between the metaxylem (possibly surrounded by it). The leaves and stems of many
fern A fern (Polypodiopsida or Polypodiophyta ) is a member of a group of vascular plants (plants with xylem and phloem) that reproduce via spores and have neither seeds nor flowers. The polypodiophytes include all living pteridophytes except t ...
s have mesarch development.


History

In his book ''De plantis libri XVI'' (On Plants, in 16 books) (1583), the Italian physician and botanist
Andrea Cesalpino Andrea Cesalpino ( Latinized as Andreas Cæsalpinus) (6 June 1524 – 23 February 1603) was a Florentine physician, philosopher and botanist. In his works he classified plants according to their fruits and seeds, rather than alphabetically ...
proposed that plants draw water from soil not by magnetism (''ut magnes ferrum trahit'', as magnetic iron attracts) nor by suction (''vacuum''), but by absorption, as occurs in the case of linen, sponges, or powders. The Italian biologist
Marcello Malpighi Marcello Malpighi (10 March 1628 – 30 November 1694) was an Italian biologist and physician, who is referred to as the "Founder of microscopical anatomy, histology & Father of physiology and embryology". Malpighi's name is borne by several ph ...
was the first person to describe and illustrate xylem vessels, which he did in his book ''Anatome plantarum'' ... (1675).Malpighi first described xylem vessels and named tracheid cells. From p. 8 of (Malpighi, 1675): ''" … haec tubulosa sunt & subrotunda, identidem tamen angustantur, & perpetuo patent, nullumque, ut observare potui, effundunt humorem: Argentea lamina L, in spiram contorta, componuntur, ut facile laceratione, (velut in bombycinis tracheis expertus sum,) in hanc oblongam & continuatam fasciam resolvantur. Lamina haec, si ulterius microscopio lustretur, particulis squamatim componitur; quod etiam in tracheis insectorum deprehenditur. Spiralibus hisce vasculis, seu ut verius loquar, tracheis, ligneae fibrae M adstant, quae secundum longitudinem productae, ad majorem firmitudinem & robur, transversalium utriculorum ordines N superequitant, ita ut fiat veluti storea."'' ( … these esselsare tubular and somewhat round, yet often become narrow, and they are always open, and none, as
ar as AR, Ar, or A&R may refer to: Arts, entertainment, and media Music * Artists and repertoire Periodicals * ''Absolute Return + Alpha'', a hedge fund publication *''The Adelaide Review'', an Australian arts magazine * ''American Renaissance'' ( ...
I could perceive, exude a liquid: they are composed of silvery sheets ''L'', twisted into a helix, although they can easily be unbound, by tearing, into this somewhat long and connected strip (just as I have done in silkworm treacheas). This sheet, if it be examined further with a microscope, is composed of scale-like particles; which likewise is observed in the tracheas of insects. On these helical vessels, or as I will more rightly say, "tracheas", there stand woody filaments ''M'', which being extended in length straddle – for greater strength and hardness – lines of transverse cells ''N'', so that it is constructed like a mat.)
Although Malpighi believed that xylem contained only air, the British physician and botanist
Nehemiah Grew Nehemiah Grew (26 September 164125 March 1712) was an English plant anatomist and physiologist, known as the "Father of Plant Anatomy". Biography Grew was the only son of Obadiah Grew (1607–1688), Nonconformist divine and vicar of St Mic ...
, who was Malpighi's contemporary, believed that sap ascended both through the bark and through the xylem. However, according to Grew,
capillary action Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of, or even in opposition to, any external forces li ...
in the xylem would raise the sap by only a few inches; in order to raise the sap to the top of a tree, Grew proposed that the parenchymal cells become turgid and thereby not only squeeze the sap in the tracheids but force some sap from the parenchyma into the tracheids. In 1727, English clergyman and botanist
Stephen Hales Stephen Hales (17 September 16774 January 1761) was an English clergyman who made major contributions to a range of scientific fields including botany, pneumatic chemistry and physiology. He was the first person to measure blood pressure. He al ...
showed that transpiration by a plant's leaves causes water to move through its xylem.Hales explained that although capillary action might help raise water within the xylem, transpiration caused water to actually move through the xylem. From (Hales, 1727), p. 100: "And by the same apillaryprinciple it is, that we see in the preceding Experiments plants imbibe moisture so vigorously up their fine capillary vessels; which moisture, as it is carried off in perspiration .e., transpiration (by the action of warmth), thereby gives the sap vessels liberty to be almost continually attracting fresh supplies, which they could not do, if they were fully saturate with moisture: For without perspiration the sap must necessarily stagnate, not withstanding the sap vessels are so curiously adapted by their exceeding fineness, to raise the sap to great heights, in reciprocal proportion to their very minute diameters." By 1891, the Polish-German botanist Eduard Strasburger had shown that the transport of water in plants did not require the xylem cells to be alive.See: * * (Jansen & Schenck, 2015), p. 1561.


See also

*
Phloem Phloem (, ) is the living biological tissue, tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as ''photosynthates'', in particular the sugar sucrose, to the rest of the plant. This tran ...
*
Soil plant atmosphere continuum The soil-plant-atmosphere continuum (SPAC) is the pathway for water moving from soil through plants to the atmosphere. Continuum in the description highlights the continuous nature of water connection through the pathway. The low water potential of ...
*
Stele A stele ( ),Anglicized plural steles ( ); Greek plural stelai ( ), from Greek , ''stēlē''. The Greek plural is written , ''stēlai'', but this is only rarely encountered in English. or occasionally stela (plural ''stelas'' or ''stelæ''), whe ...
* Suction * Tylosis *
Vascular bundle A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will inc ...
*
Vascular tissue Vascular tissue is a complex conducting tissue, formed of more than one cell type, found in vascular plants. The primary components of vascular tissue are the xylem and phloem. These two tissues transport fluid and nutrients internally. There ...
*
Xylem sap Sap is a fluid transported in xylem cells (vessel elements or tracheids) or phloem sieve tube elements of a plant. These cells transport water and nutrients throughout the plant. Sap is distinct from latex, resin, or cell sap; it is a sepa ...


Explanatory notes


References


Citations


General references

* is the main source used for the paragraph on recent research. * is the first published independent test showing the Scholander bomb actually does measure the tension in the xylem. * is the second published independent test showing the Scholander bomb actually does measure the tension in the xylem. * * * * recent update of the classic book on xylem transport by the late Martin Zimmermann


External links

* {{Authority control Plant anatomy Plant cells Plant physiology Tissues (biology)