Trivialization (mathematics)
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the ''trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the
Möbius strip In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and Augu ...
and
Klein bottle In topology, a branch of mathematics, the Klein bottle () is an example of a non-orientable surface; it is a two-dimensional manifold against which a system for determining a normal vector cannot be consistently defined. Informally, it is a o ...
, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
and other more general vector bundles, play an important role in
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
and
differential topology In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
, as do principal bundles. Mappings between total spaces of fiber bundles that "commute" with the projection maps are known as bundle maps, and the class of fiber bundles forms a category with respect to such mappings. A bundle map from the base space itself (with the identity mapping as projection) to E is called a section of E. Fiber bundles can be specialized in a number of ways, the most common of which is requiring that the transition maps between the local trivial patches lie in a certain topological group, known as the structure group, acting on the fiber F.


History

In topology, the terms ''fiber'' (German: ''Faser'') and ''fiber space'' (''gefaserter Raum'') appeared for the first time in a paper by
Herbert Seifert Herbert Karl Johannes Seifert (; 27 May 1897, Bernstadt – 1 October 1996, Heidelberg) was a German mathematician known for his work in topology. Biography Seifert was born in Bernstadt auf dem Eigen, but soon moved to Bautzen, where he attend ...
in 1933, but his definitions are limited to a very special case. The main difference from the present day conception of a fiber space, however, was that for Seifert what is now called the base space (topological space) of a fiber (topological) space ''E'' was not part of the structure, but derived from it as a quotient space of ''E''. The first definition of fiber space was given by Hassler Whitney in 1935 under the name sphere space, but in 1940 Whitney changed the name to sphere bundle. The theory of fibered spaces, of which vector bundles, principal bundles, topological
fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all map ...
s and fibered manifolds are a special case, is attributed to Seifert, Heinz Hopf,
Jacques Feldbau Jacques Feldbau was a French mathematician, born on 22 October 1914 in Strasbourg, of an Alsatian Jewish traditionalist family. He died on 22 April 1945 at the ''Ganacker'' Camp, annex of the concentration camp of Flossenbürg in Germany. As a ...
, Whitney, Norman Steenrod,
Charles Ehresmann Charles Ehresmann (19 April 1905 – 22 September 1979) was a German-born French mathematician who worked in differential topology and category theory. He was an early member of the Bourbaki group, and is known for his work on the differential ...
, Jean-Pierre Serre, and others. Fiber bundles became their own object of study in the period 1935–1940. The first general definition appeared in the works of Whitney. Whitney came to the general definition of a fiber bundle from his study of a more particular notion of a sphere bundle, that is a fiber bundle whose fiber is a sphere of arbitrary dimension.


Formal definition

A fiber bundle is a structure (E,\, B,\, \pi,\, F), where E, B, and F are topological spaces and \pi : E \to B is a continuous surjection satisfying a ''local triviality'' condition outlined below. The space B is called the of the bundle, E the , and F the . The map \pi is called the (or ). We shall assume in what follows that the base space B is connected. We require that for every x \in B, there is an open
neighborhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, ...
U \subseteq B of x (which will be called a trivializing neighborhood) such that there is a homeomorphism \varphi : \pi^(U) \to U \times F (where \pi^(U) is given the subspace topology, and U \times F is the product space) in such a way that \pi agrees with the projection onto the first factor. That is, the following diagram should commute: Local triviality condition, 230px, center where \operatorname_1 : U \times F \to U is the natural projection and \varphi : \pi^(U) \to U \times F is a homeomorphism. The set of all \left\ is called a of the bundle. Thus for any p \in B, the
preimage In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) ...
\pi^(\) is homeomorphic to F (since this is true of \operatorname_1^(\)) and is called the fiber over p. Every fiber bundle \pi : E \to B is an
open map In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function f : X \to Y is open if for any open set U in X, the image f(U) is open in Y. Likewise, a ...
, since projections of products are open maps. Therefore B carries the quotient topology determined by the map \pi. A fiber bundle (E,\, B,\, \pi,\, F) is often denoted that, in analogy with a short exact sequence, indicates which space is the fiber, total space and base space, as well as the map from total to base space. A is a fiber bundle in the category of smooth manifolds. That is, E, B, and F are required to be smooth manifolds and all the functions above are required to be smooth maps.


Examples


Trivial bundle

Let E = B \times F and let \pi : E \to B be the projection onto the first factor. Then \pi is a fiber bundle (of F) over B. Here E is not just locally a product but ''globally'' one. Any such fiber bundle is called a . Any fiber bundle over a contractible CW-complex is trivial.


Nontrivial bundles


Möbius strip

Perhaps the simplest example of a nontrivial bundle E is the
Möbius strip In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and Augu ...
. It has the circle that runs lengthwise along the center of the strip as a base B and a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
for the fiber F, so the Möbius strip is a bundle of the line segment over the circle. A
neighborhood A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, ...
U of \pi(x) \in B (where x \in E) is an
arc ARC may refer to: Business * Aircraft Radio Corporation, a major avionics manufacturer from the 1920s to the '50s * Airlines Reporting Corporation, an airline-owned company that provides ticket distribution, reporting, and settlement services * ...
; in the picture, this is the length of one of the squares. The
preimage In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) ...
\pi^(U) in the picture is a (somewhat twisted) slice of the strip four squares wide and one long (i.e. all the points that project to U). A homeomorphism (\varphi in ) exists that maps the preimage of U (the trivializing neighborhood) to a slice of a cylinder: curved, but not twisted. This pair locally trivializes the strip. The corresponding trivial bundle B\times F would be a cylinder, but the Möbius strip has an overall "twist". This twist is visible only globally; locally the Möbius strip and the cylinder are identical (making a single vertical cut in either gives the same space).


Klein bottle

A similar nontrivial bundle is the
Klein bottle In topology, a branch of mathematics, the Klein bottle () is an example of a non-orientable surface; it is a two-dimensional manifold against which a system for determining a normal vector cannot be consistently defined. Informally, it is a o ...
, which can be viewed as a "twisted" circle bundle over another circle. The corresponding non-twisted (trivial) bundle is the 2- torus, S^1 \times S^1.


Covering map

A covering space is a fiber bundle such that the bundle projection is a local homeomorphism. It follows that the fiber is a
discrete space In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a , meaning they are '' isolated'' from each other in a certain sense. The discrete topology is the finest to ...
.


Vector and principal bundles

A special class of fiber bundles, called vector bundles, are those whose fibers are vector spaces (to qualify as a vector bundle the structure group of the bundle — see below — must be a linear group). Important examples of vector bundles include the tangent bundle and
cotangent bundle In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may ...
of a smooth manifold. From any vector bundle, one can construct the frame bundle of bases, which is a principal bundle (see below). Another special class of fiber bundles, called principal bundles, are bundles on whose fibers a free and transitive action by a group G is given, so that each fiber is a principal homogeneous space. The bundle is often specified along with the group by referring to it as a principal G-bundle. The group G is also the structure group of the bundle. Given a
representation Representation may refer to: Law and politics *Representation (politics), political activities undertaken by elected representatives, as well as other theories ** Representative democracy, type of democracy in which elected officials represent a ...
\rho of G on a vector space V, a vector bundle with \rho(G) \subseteq \text(V) as a structure group may be constructed, known as the associated bundle.


Sphere bundles

A sphere bundle is a fiber bundle whose fiber is an ''n''-sphere. Given a vector bundle E with a metric (such as the tangent bundle to a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
) one can construct the associated unit sphere bundle, for which the fiber over a point x is the set of all unit vectors in E_x. When the vector bundle in question is the tangent bundle TM, the unit sphere bundle is known as the
unit tangent bundle In Riemannian geometry, the unit tangent bundle of a Riemannian manifold (''M'', ''g''), denoted by T1''M'', UT(''M'') or simply UT''M'', is the unit sphere bundle for the tangent bundle T(''M''). It is a fiber bundle over ''M'' whose fiber at ea ...
. A sphere bundle is partially characterized by its Euler class, which is a degree n + 1 cohomology class in the total space of the bundle. In the case n = 1 the sphere bundle is called a circle bundle and the Euler class is equal to the first Chern class, which characterizes the topology of the bundle completely. For any n, given the Euler class of a bundle, one can calculate its cohomology using a long exact sequence called the Gysin sequence.


Mapping tori

If X is a topological space and f : X \to X is a homeomorphism then the mapping torus M_f has a natural structure of a fiber bundle over the circle with fiber X. Mapping tori of homeomorphisms of surfaces are of particular importance in 3-manifold topology.


Quotient spaces

If G is a topological group and H is a closed subgroup, then under some circumstances, the
quotient space Quotient space may refer to a quotient set when the sets under consideration are considered as spaces. In particular: *Quotient space (topology), in case of topological spaces * Quotient space (linear algebra), in case of vector spaces *Quotient ...
G/H together with the quotient map \pi : G \to G/H is a fiber bundle, whose fiber is the topological space H. A necessary and sufficient condition for (G,\, G/H,\, \pi,\, H) to form a fiber bundle is that the mapping \pi admits local cross-sections . The most general conditions under which the quotient map will admit local cross-sections are not known, although if G is a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
and H a closed subgroup (and thus a Lie subgroup by Cartan's theorem), then the quotient map is a fiber bundle. One example of this is the Hopf fibration, S^3 \to S^2, which is a fiber bundle over the sphere S^2 whose total space is S^3. From the perspective of Lie groups, S^3 can be identified with the special unitary group SU(2). The abelian subgroup of diagonal matrices is isomorphic to the
circle group In mathematics, the circle group, denoted by \mathbb T or \mathbb S^1, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers. \mathbb T = \ ...
U(1), and the quotient SU(2)/U(1) is diffeomorphic to the sphere. More generally, if G is any topological group and H a closed subgroup that also happens to be a Lie group, then G \to G/H is a fiber bundle.


Sections

A (or cross section) of a fiber bundle \pi is a continuous map f : B \to E such that \pi(f(x)) = x for all ''x'' in ''B''. Since bundles do not in general have globally defined sections, one of the purposes of the theory is to account for their existence. The obstruction to the existence of a section can often be measured by a cohomology class, which leads to the theory of characteristic classes in algebraic topology. The most well-known example is the hairy ball theorem, where the Euler class is the obstruction to the tangent bundle of the 2-sphere having a nowhere vanishing section. Often one would like to define sections only locally (especially when global sections do not exist). A local section of a fiber bundle is a continuous map f : U \to E where ''U'' is an open set in ''B'' and \pi(f(x)) = x for all ''x'' in ''U''. If (U,\, \varphi) is a local trivialization chart then local sections always exist over ''U''. Such sections are in 1-1 correspondence with continuous maps U \to F. Sections form a sheaf.


Structure groups and transition functions

Fiber bundles often come with a group of symmetries that describe the matching conditions between overlapping local trivialization charts. Specifically, let ''G'' be a topological group that
acts The Acts of the Apostles ( grc-koi, Πράξεις Ἀποστόλων, ''Práxeis Apostólōn''; la, Actūs Apostolōrum) is the fifth book of the New Testament; it tells of the founding of the Christian Church and the spread of its message ...
continuously on the fiber space ''F'' on the left. We lose nothing if we require ''G'' to act faithfully on ''F'' so that it may be thought of as a group of homeomorphisms of ''F''. A ''G''- atlas for the bundle (E, B, \pi, F) is a set of local trivialization charts \ such that for any \varphi_i,\varphi_j for the overlapping charts (U_i,\, \varphi_i) and (U_j,\, \varphi_j) the function \varphi_i\varphi_j^ : \left(U_i \cap U_j\right) \times F \to \left(U_i \cap U_j\right) \times F is given by \varphi_i\varphi_j^(x,\, \xi) = \left(x,\, t_(x)\xi\right) where t_ : U_i \cap U_j \to G is a continuous map called a . Two ''G''-atlases are equivalent if their union is also a ''G''-atlas. A ''G''-bundle is a fiber bundle with an equivalence class of ''G''-atlases. The group ''G'' is called the of the bundle; the analogous term in physics is gauge group. In the smooth category, a ''G''-bundle is a smooth fiber bundle where ''G'' is a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
and the corresponding action on ''F'' is smooth and the transition functions are all smooth maps. The transition functions t_ satisfy the following conditions # t_(x) = 1\, # t_(x) = t_(x)^\, # t_(x) = t_(x)t_(x).\, The third condition applies on triple overlaps ''Ui'' ∩ ''Uj'' ∩ ''Uk'' and is called the
cocycle In mathematics a cocycle is a closed cochain. Cocycles are used in algebraic topology to express obstructions (for example, to integrating a differential equation on a closed manifold). They are likewise used in group cohomology. In autonomous d ...
condition (see Čech cohomology). The importance of this is that the transition functions determine the fiber bundle (if one assumes the Čech cocycle condition). A principal ''G''-bundle is a ''G''-bundle where the fiber ''F'' is a principal homogeneous space for the left action of ''G'' itself (equivalently, one can specify that the action of ''G'' on the fiber ''F'' is free and transitive, i.e. regular). In this case, it is often a matter of convenience to identify ''F'' with ''G'' and so obtain a (right) action of ''G'' on the principal bundle.


Bundle maps

It is useful to have notions of a mapping between two fiber bundles. Suppose that ''M'' and ''N'' are base spaces, and \pi_E : E \to M and \pi_F : F \to N are fiber bundles over ''M'' and ''N'', respectively. A or consists of a pair of continuous functions \varphi : E \to F,\quad f : M \to N such that \pi_F\circ \varphi = f \circ \pi_E. That is, the following diagram is commutative: For fiber bundles with structure group ''G'' and whose total spaces are (right) ''G''-spaces (such as a principal bundle), bundle morphisms are also required to be ''G''- equivariant on the fibers. This means that \varphi : E \to F is also ''G''-morphism from one ''G''-space to another, that is, \varphi(xs) = \varphi(x)s for all x \in E and s \in G. In case the base spaces ''M'' and ''N'' coincide, then a bundle morphism over ''M'' from the fiber bundle \pi_E : E \to M to \pi_F : F \to M is a map \varphi : E \to F such that \pi_E = \pi_F \circ \varphi. This means that the bundle map \varphi : E \to F covers the identity of ''M''. That is, f \equiv \mathrm_ and the following diagram commutes: Assume that both \pi_E : E \to M and \pi_F : F \to M are defined over the same base space ''M''. A bundle isomorphism is a bundle map (\varphi,\, f) between \pi_E : E \to M and \pi_F : F \to M such that f \equiv \mathrm_M and such that \varphi is also a homeomorphism. Or is, at least, invertible in the appropriate category; e.g., a diffeomorphism.


Differentiable fiber bundles

In the category of
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s, fiber bundles arise naturally as submersions of one manifold to another. Not every (differentiable) submersion f : M \to N from a differentiable manifold ''M'' to another differentiable manifold ''N'' gives rise to a differentiable fiber bundle. For one thing, the map must be surjective, and (M, N, f) is called a fibered manifold. However, this necessary condition is not quite sufficient, and there are a variety of sufficient conditions in common use. If ''M'' and ''N'' are compact and connected, then any submersion f : M \to N gives rise to a fiber bundle in the sense that there is a fiber space ''F'' diffeomorphic to each of the fibers such that (E, B, \pi, F) = (M, N, f, F) is a fiber bundle. (Surjectivity of f follows by the assumptions already given in this case.) More generally, the assumption of compactness can be relaxed if the submersion f : M \to N is assumed to be a surjective proper map, meaning that f^(K) is compact for every compact subset ''K'' of ''N''. Another sufficient condition, due to , is that if f : M \to N is a surjective submersion with ''M'' and ''N''
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s such that the preimage f^\ is compact and connected for all x \in N, then f admits a compatible fiber bundle structure .


Generalizations

* The notion of a bundle applies to many more categories in mathematics, at the expense of appropriately modifying the local triviality condition; cf. principal homogeneous space and torsor (algebraic geometry). * In topology, a
fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all map ...
is a mapping \pi : E \to B that has certain homotopy-theoretic properties in common with fiber bundles. Specifically, under mild technical assumptions a fiber bundle always has the homotopy lifting property or homotopy covering property (see for details). This is the defining property of a fibration. * A section of a fiber bundle is a "function whose output range is continuously dependent on the input." This property is formally captured in the notion of dependent type.


See also

* Affine bundle * Algebra bundle * Characteristic class * Covering map *
Equivariant bundle In geometry and topology, given a group ''G'', an equivariant bundle is a fiber bundle such that the total space and the base spaces are both ''G''-spaces and the projection map \pi between them is equivariant: \pi \circ g = g \circ \pi with som ...
* Fibered manifold *
Fibration The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all map ...
*
Gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups) ...
* Hopf bundle *
I-bundle In mathematics, an I-bundle is a fiber bundle whose fiber is an interval (mathematics), interval and whose base is a manifold. Any kind of interval, open, closed, semi-open, semi-closed, open-bounded, compact, even Line (mathematics)#Ray, rays ...
*
Natural bundle In mathematics, a natural bundle is any fiber bundle associated to the ''s''-frame bundle F^s(M) for some s \geq 1. It turns out that its transition functions depend functionally on local changes of coordinates in the base manifold M together with t ...
* Principal bundle * Projective bundle * Pullback bundle *
Quasifibration In algebraic topology, a quasifibration is a generalisation of fibre bundles and fibrations introduced by Albrecht Dold and René Thom. Roughly speaking, it is a continuous map ''p'': ''E'' → ''B'' having the same behaviour as a fibration regardi ...
* Universal bundle * Vector bundle


Notes


References

* * * * * * *


External links


Fiber Bundle
PlanetMath *

* Sardanashvily, Gennadi, Fibre bundles, jet manifolds and Lagrangian theory. Lectures for theoreticians, {{DEFAULTSORT:Fiber Bundle