Torus (other)
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a torus (: tori or toruses) is a surface of revolution generated by revolving a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
in
three-dimensional space Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position (geometry), position of an element (i.e., Point (m ...
one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus. If the axis of revolution is
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a
spindle torus Spindle may refer to: Textiles and manufacturing * Spindle (textiles), a straight spike to spin fibers into yarn * Spindle (tool), a rotating axis of a machine tool Biology * Common spindle and other species of shrubs and trees in genus ''Euonym ...
(or ''self-crossing torus'' or ''self-intersecting torus''). If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
. If the revolved curve is not a circle, the surface is called a '' toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include
swim ring A swim ring (also known as a swimming ring, swim tube, rubber ring, water donut, floatie, inner tube, or, in the United States, a lifesaver) is a toroid-shaped (hence the name "ring" or "doughnut") inflatable water toy. The swim ring was derived ...
s, inner tubes and
ringette ring Ringette is a non-contact winter team sport played on ice hockey rinks using ice hockey skates, straight sticks with drag-tips, and a blue, rubber, pneumatic ring designed for use on ice surfaces. The sport is among a small number of organi ...
s. A torus should not be confused with a ''
solid torus In mathematics, a solid torus is the topological space formed by sweeping a disk around a circle. It is homeomorphic to the Cartesian product S^1 \times D^2 of the disk and the circle, endowed with the product topology. A standard way to visuali ...
'', which is formed by rotating a
disk Disk or disc may refer to: * Disk (mathematics), a geometric shape * Disk storage Music * Disc (band), an American experimental music band * ''Disk'' (album), a 1995 EP by Moby Other uses * Disk (functional analysis), a subset of a vector sp ...
, rather than a circle, around an axis. A solid torus is a torus plus the
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
inside the torus. Real-world objects that approximate a ''solid torus'' include O-rings, non-inflatable lifebuoys, ring
doughnut A doughnut or donut () is a type of food made from leavened fried dough. It is popular in many countries and is prepared in various forms as a sweet snack that can be homemade or purchased in bakeries, supermarkets, food stalls, and franc ...
s, and
bagel A bagel ( yi, בײגל, translit=beygl; pl, bajgiel; also spelled beigel) is a bread roll originating in the Jewish communities of Poland. It is traditionally shaped by hand into a roughly hand-sized ring from yeasted wheat dough that is first ...
s. In
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, a ring torus is
homeomorphic In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
to the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
of two
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s: S^\times S^, and the latter is taken to be the definition in that context. It is a compact 2-manifold of genus 1. The ring torus is one way to embed this space into
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
, but another way to do this is the Cartesian product of the embedding of S^ in the plane with itself. This produces a geometric object called the
Clifford torus In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the cartesian product of two circles ''S'' and ''S'' (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdo ...
, a surface in
4-space A four-dimensional space (4D) is a mathematical extension of the concept of three-dimensional or 3D space. Three-dimensional space is the simplest possible abstraction of the observation that one only needs three numbers, called ''dimensions'', ...
. In the field of
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, a torus is any topological space that is homeomorphic to a torus. The surface of a coffee cup and a doughnut are both topological tori with
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
one. An example of a torus can be constructed by taking a rectangular strip of flexible material such as rubber, and joining the top edge to the bottom edge, and the left edge to the right edge, without any half-twists (compare
Klein bottle In topology, a branch of mathematics, the Klein bottle () is an example of a non-orientable surface; it is a two-dimensional manifold against which a system for determining a normal vector cannot be consistently defined. Informally, it is a o ...
).


Etymology

''
Torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
'' is a Latin word for "a round, swelling, elevation, protuberance".


Geometry

A torus can be parametrized as: \begin x(\theta, \varphi) &= (R + r \cos \theta) \cos\\ y(\theta, \varphi) &= (R + r \cos \theta) \sin\\ z(\theta, \varphi) &= r \sin \theta\\ \end using angular coordinates \theta, \varphi \in [0,2\pi), representing rotation around the tube and rotation around the torus' axis of revolution, respectively, where the ''major radius'' R is the distance from the center of the tube to the center of the torus and the ''minor radius'' r is the radius of the tube. The ratio R/r is called the ''aspect ratio'' of the torus. The typical doughnut confectionery has an aspect ratio of about 3 to 2. An implicit function, implicit equation in Cartesian coordinates for a torus radially symmetric about the z- axis is + z^2 = r^2. Algebraically eliminating the
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . E ...
gives a quartic equation, \left(x^2 + y^2 + z^2 + R^2 - r^2\right)^2 = 4R^2\left(x^2+y^2\right). The three classes of standard tori correspond to the three possible aspect ratios between and : *When , the surface will be the familiar ring torus or anchor ring. * corresponds to the horn torus, which in effect is a torus with no "hole". * describes the self-intersecting spindle torus; its inner shell is a '' lemon'' and its outer shell is an ''
apple An apple is an edible fruit produced by an apple tree (''Malus domestica''). Apple fruit tree, trees are agriculture, cultivated worldwide and are the most widely grown species in the genus ''Malus''. The tree originated in Central Asia, wh ...
''. *When , the torus degenerates to the sphere radius . *When , the torus degenerates to the circle radius . When , the
interior Interior may refer to: Arts and media * ''Interior'' (Degas) (also known as ''The Rape''), painting by Edgar Degas * ''Interior'' (play), 1895 play by Belgian playwright Maurice Maeterlinck * ''The Interior'' (novel), by Lisa See * Interior de ...
+ z^2 < r^2 of this torus is
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an Inverse function, invertible Function (mathematics), function that maps one differentiable manifold to another such that both the function and its inverse function ...
(and, hence, homeomorphic) to a product of a Euclidean open disk and a circle. The
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
of this solid torus and the
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
of its torus are easily computed using Pappus's centroid theorem, giving: \begin A &= \left( 2\pi r \right) \left(2 \pi R \right) = 4 \pi^2 R r, \\ muV &= \left ( \pi r^2 \right ) \left( 2 \pi R \right) = 2 \pi^2 R r^2. \end These formulas are the same as for a cylinder of length and radius , obtained from cutting the tube along the plane of a small circle, and unrolling it by straightening out (rectifying) the line running around the center of the tube. The losses in surface area and volume on the inner side of the tube exactly cancel out the gains on the outer side. Expressing the surface area and the volume by the distance of an outermost point on the surface of the torus to the center, and the distance of an innermost point to the center (so that and ), yields \begin A &= 4 \pi^2 \left(\frac\right) \left(\frac\right) = \pi^2 (p+q) (p-q), \\ muV &= 2 \pi^2 \left(\frac\right) \left(\frac\right)^2 = \tfrac14 \pi^2 (p+q) (p-q)^2. \end As a torus is the product of two circles, a modified version of the
spherical coordinate system In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the ''radial distance'' of that point from a fixed origin, its ''polar angle'' measu ...
is sometimes used. In traditional spherical coordinates there are three measures, , the distance from the center of the coordinate system, and and , angles measured from the center point. As a torus has, effectively, two center points, the centerpoints of the angles are moved; measures the same angle as it does in the spherical system, but is known as the "toroidal" direction. The center point of is moved to the center of , and is known as the "poloidal" direction. These terms were first used in a discussion of the Earth's magnetic field, where "poloidal" was used to denote "the direction toward the poles". In modern use, toroidal and poloidal are more commonly used to discuss magnetic confinement fusion devices.


Topology

Topologically In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ho ...
, a torus is a closed surface defined as the product of two
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
s: ''S''1 × ''S''1. This can be viewed as lying in C2 and is a subset of the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensi ...
''S''3 of radius √2. This topological torus is also often called the
Clifford torus In geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the cartesian product of two circles ''S'' and ''S'' (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdo ...
. In fact, ''S''3 is filled out by a family of nested tori in this manner (with two degenerate circles), a fact which is important in the study of ''S''3 as a
fiber bundle In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a p ...
over ''S''2 (the
Hopf bundle In the mathematical field of differential topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Ho ...
). The surface described above, given the
relative topology In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
from \mathbb^, is
homeomorphic In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
to a topological torus as long as it does not intersect its own axis. A particular homeomorphism is given by stereographically projecting the topological torus into \mathbb^ from the north pole of ''S''3. The torus can also be described as a quotient of the Cartesian plane under the identifications :(x,y) \sim (x+1,y) \sim (x,y+1), \, or, equivalently, as the quotient of the
unit square In mathematics, a unit square is a square whose sides have length . Often, ''the'' unit square refers specifically to the square in the Cartesian plane with corners at the four points ), , , and . Cartesian coordinates In a Cartesian coordinate ...
by pasting the opposite edges together, described as a fundamental polygon ''ABA''−1''B''−1. The
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
of the torus is just the
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one ta ...
of the fundamental group of the circle with itself: :\pi_1(\mathbb^2) = \pi_1(\mathbb^1) \times \pi_1(\mathbb^1) \cong \mathbb \times \mathbb. Intuitively speaking, this means that a closed path that circles the torus' "hole" (say, a circle that traces out a particular latitude) and then circles the torus' "body" (say, a circle that traces out a particular longitude) can be deformed to a path that circles the body and then the hole. So, strictly 'latitudinal' and strictly 'longitudinal' paths commute. An equivalent statement may be imagined as two shoelaces passing through each other, then unwinding, then rewinding. If a torus is punctured and turned inside out then another torus results, with lines of latitude and longitude interchanged. This is equivalent to building a torus from a cylinder, by joining the circular ends together, in two ways: around the outside like joining two ends of a garden hose, or through the inside like rolling a sock (with the toe cut off). Additionally, if the cylinder was made by gluing two opposite sides of a rectangle together, choosing the other two sides instead will cause the same reversal of orientation. The first
homology group In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
of the torus is
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
to the fundamental group (this follows from
Hurewicz theorem In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results ...
since the fundamental group is
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
).


Two-sheeted cover

The 2-torus double-covers the 2-sphere, with four
ramification point In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as ...
s. Every
conformal structure In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two d ...
on the 2-torus can be represented as a two-sheeted cover of the 2-sphere. The points on the torus corresponding to the ramification points are the
Weierstrass point In mathematics, a Weierstrass point P on a nonsingular algebraic curve C defined over the complex numbers is a point such that there are more functions on C, with their poles restricted to P only, than would be predicted by the Riemann–Roch theore ...
s. In fact, the conformal type of the torus is determined by the
cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, the ...
of the four points.


''n''-dimensional torus

The torus has a generalization to higher dimensions, the , often called the or for short. (This is the more typical meaning of the term "''n''-torus", the other referring to ''n'' holes or of genus ''n''.) Recalling that the torus is the product space of two circles, the ''n''-dimensional torus is the product of ''n'' circles. That is: :\mathbb^n = \underbrace_n. The standard 1-torus is just the circle: \mathbb^=\mathbb^ . The torus discussed above is the standard 2-torus, \mathbb^2. And similar to the 2-torus, the ''n''-torus, \mathbb^ can be described as a quotient of \mathbb^ under integral shifts in any coordinate. That is, the ''n''-torus is \mathbb^ modulo the action of the integer lattice \mathbb^ (with the action being taken as vector addition). Equivalently, the ''n''-torus is obtained from the ''n''-dimensional
hypercube In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
by gluing the opposite faces together. An ''n''-torus in this sense is an example of an ''n-''dimensional
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
. It is also an example of a compact
abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
. This follows from the fact that the
unit circle In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Eucl ...
is a compact abelian Lie group (when identified with the unit
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s with multiplication). Group multiplication on the torus is then defined by coordinate-wise multiplication. Toroidal groups play an important part in the theory of compact Lie groups. This is due in part to the fact that in any compact Lie group ''G'' one can always find a maximal torus; that is, a closed subgroup which is a torus of the largest possible dimension. Such maximal tori ''T'' have a controlling role to play in theory of connected ''G''. Toroidal groups are examples of protori, which (like tori) are compact connected abelian groups, which are not required to be
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
s.
Automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
s of ''T'' are easily constructed from automorphisms of the lattice \mathbb^, which are classified by invertible
integral matrices In mathematics, an integer matrix is a matrix whose entries are all integers. Examples include binary matrices, the zero matrix, the matrix of ones, the identity matrix, and the adjacency matrices used in graph theory, amongst many others. Int ...
of size ''n'' with an integral inverse; these are just the integral matrices with determinant ±1. Making them act on \mathbb^ in the usual way, one has the typical ''toral automorphism'' on the quotient. The
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
of an ''n''-torus is a
free abelian group In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subse ...
of rank ''n''. The ''k''-th
homology group In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
of an ''n''-torus is a free abelian group of rank ''n'' choose ''k''. It follows that the
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
of the ''n''-torus is 0 for all ''n''. The
cohomology ring In mathematics, specifically algebraic topology, the cohomology ring of a topological space ''X'' is a ring formed from the cohomology groups of ''X'' together with the cup product serving as the ring multiplication. Here 'cohomology' is usually und ...
''H''(\mathbb^, Z) can be identified with the exterior algebra over the Z-
module Module, modular and modularity may refer to the concept of modularity. They may also refer to: Computing and engineering * Modular design, the engineering discipline of designing complex devices using separately designed sub-components * Modul ...
\mathbb^ whose generators are the duals of the ''n'' nontrivial cycles.


Configuration space

As the ''n''-torus is the ''n''-fold product of the circle, the ''n''-torus is the configuration space of ''n'' ordered, not necessarily distinct points on the circle. Symbolically, \mathbb^= (\mathbb^)^. The configuration space of ''unordered'', not necessarily distinct points is accordingly the orbifold \mathbb^ / \mathbb_, which is the quotient of the torus by the symmetric group on ''n'' letters (by permuting the coordinates). For ''n'' = 2, the quotient is the
Möbius strip In mathematics, a Möbius strip, Möbius band, or Möbius loop is a surface that can be formed by attaching the ends of a strip of paper together with a half-twist. As a mathematical object, it was discovered by Johann Benedict Listing and Augu ...
, the edge corresponding to the orbifold points where the two coordinates coincide. For ''n'' = 3 this quotient may be described as a solid torus with cross-section an equilateral triangle, with a
twist Twist may refer to: In arts and entertainment Film, television, and stage * ''Twist'' (2003 film), a 2003 independent film loosely based on Charles Dickens's novel ''Oliver Twist'' * ''Twist'' (2021 film), a 2021 modern rendition of ''Olive ...
; equivalently, as a
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A unif ...
whose top and bottom faces are connected with a 1/3 twist (120°): the 3-dimensional interior corresponds to the points on the 3-torus where all 3 coordinates are distinct, the 2-dimensional face corresponds to points with 2 coordinates equal and the 3rd different, while the 1-dimensional edge corresponds to points with all 3 coordinates identical. These orbifolds have found significant applications to music theory in the work of Dmitri Tymoczko and collaborators (Felipe Posada, Michael Kolinas, et al.), being used to model musical triads.


Flat torus

A flat torus is a torus with the metric inherited from its representation as the quotient, \mathbb^/L, where L is a discrete subgroup of \mathbb^ isomorphic to \mathbb^. This gives the quotient the structure of a
Riemannian manifold In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real manifold, real, smooth manifold ''M'' equipped with a positive-definite Inner product space, inner product ...
. Perhaps the simplest example of this is when : \mathbb^/\mathbb^, which can also be described as the Cartesian plane under the identifications . This particular flat torus (and any uniformly scaled version of it) is known as the "square" flat torus. This metric of the square flat torus can also be realised by specific embeddings of the familiar 2-torus into Euclidean 4-space or higher dimensions. Its surface has zero
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a surface at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. The Gaussian radius of curvature is the reciprocal of . F ...
everywhere. Its surface is flat in the same sense that the surface of a cylinder is flat. In 3 dimensions, one can bend a flat sheet of paper into a cylinder without stretching the paper, but this cylinder cannot be bent into a torus without stretching the paper (unless some regularity and differentiability conditions are given up, see below). A simple 4-dimensional Euclidean embedding of a rectangular flat torus (more general than the square one) is as follows: :(x,y,z,w) = (R\cos u, R\sin u, P\cos v, P\sin v) where ''R'' and ''P'' are positive constants determining the aspect ratio. It is
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an Inverse function, invertible Function (mathematics), function that maps one differentiable manifold to another such that both the function and its inverse function ...
to a regular torus but not
isometric The term ''isometric'' comes from the Greek for "having equal measurement". isometric may mean: * Cubic crystal system, also called isometric crystal system * Isometre, a rhythmic technique in music. * "Isometric (Intro)", a song by Madeon from ...
. It can not be analytically embedded ( smooth of class ) into Euclidean 3-space. Mapping it into ''3''-space requires one to stretch it, in which case it looks like a regular torus. For example, in the following map: :(x,y,z) = ((R+P\sin v)\cos u, (R+P\sin v)\sin u, P\cos v). If ''R'' and ''P'' in the above flat torus parametrization form a unit vector then ''u'', ''v'', and 0 < ''η'' < /2 parameterize the unit 3-sphere as Hopf coordinates. In particular, for certain very specific choices of a square flat torus in the
3-sphere In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensi ...
''S''3, where above, the torus will partition the 3-sphere into two congruent solid tori subsets with the aforesaid flat torus surface as their common boundary. One example is the torus T defined by :T = \left\. Other tori in ''S''3 having this partitioning property include the square tori of the form ''Q''⋅T, where ''Q'' is a rotation of 4-dimensional space \mathbb^, or in other words ''Q'' is a member of the Lie group SO(4). It is known that there exists no ''C''2 (twice continuously differentiable) embedding of a flat torus into 3-space. (The idea of the proof is to take a large sphere containing such a flat torus in its interior, and shrink the radius of the sphere until it just touches the torus for the first time. Such a point of contact must be a tangency. But that would imply that part of the torus, since it has zero curvature everywhere, must lie strictly outside the sphere, which is a contradiction.) On the other hand, according to the
Nash-Kuiper theorem The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedded into some Euclidean space. Isometric means preserving the length of every path. For instan ...
, which was proven in the 1950s, an isometric ''C''1 embedding exists. This is solely an existence proof and does not provide explicit equations for such an embedding. In April 2012, an explicit ''C''1 (continuously differentiable) embedding of a flat torus into 3-dimensional Euclidean space \mathbb^ was found. It is a flat torus in the sense that as metric spaces, it is isometric to a flat square torus. It is similar in structure to a
fractal In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illu ...
as it is constructed by repeatedly corrugating an ordinary torus. Like fractals, it has no defined Gaussian curvature. However, unlike fractals, it does have defined
surface normals In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object. For example, the normal line to a plane curve at a given point is the (infinite) line perpendicular to the tangent line to the curve at ...
, yielding a so-called "smooth fractal". The key to obtain the smoothness of this corrugated torus is to have the amplitudes of successive corrugations decreasing faster than their "wavelengths". (These infinitely recursive corrugations are used only for embedding into three dimensions; they are not an intrinsic feature of the flat torus.) This is the first time that any such embedding was defined by explicit equations or depicted by computer graphics.


Conformal classification of flat tori

In the study of
Riemann surfaces In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versio ...
, one says that any two smooth compact geometric surfaces are "conformally equivalent" when there exists a smooth homeomorphism between them that is both angle-preserving and orientation-preserving. The uniformization theorem guarantees that every Riemann surface is conformally equivalent to one that has constant Gaussian curvature. In the case of a torus, the constant curvature must be zero. Then one defines the "moduli space" of the torus to contain one point for each conformal equivalence class, with the appropriate topology. It turns out that this moduli space ''M'' may be identified with a punctured sphere that is smooth except for two points that have less angle than 2π (radians) around them: One has π and the other has 2π/3. ''M'' may be turned into a compact space ''M*'' by adding one additional point that represents the limiting case as a rectangular torus approaches an aspect ratio of 0 in the limit. The result is that this compactified moduli space is a sphere with ''three'' points each having less than 2π angle around them. (Such points are termed "cusps".) This additional point will have zero angle around it. Due to symmetry, ''M*'' may be constructed by glueing together two congruent geodesic triangles in the hyperbolic plane along their (identical) boundaries, where each triangle has angles of π/2, π/3, and 0. As a result the area of each triangle can be calculated as π - (π/2 + π/3 + 0) = π/6, so it follows that the compactified moduli space ''M*'' has area equal to π/3. The other two cusps occur at the points corresponding in ''M*'' to a) the square torus (π) and b) the hexagonal torus (2π/3). These are the only conformal equivalence classes of flat tori that have any conformal automorphisms other than those generated by translations and negation.


Genus ''g'' surface

In the theory of surfaces there is a more general family of objects, the "
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
" ''g'' surfaces. A genus ''g'' surface is the connected sum of ''g'' two-tori. (And so the torus itself is the surface of genus 1.) To form a connected sum of two surfaces, remove from each the interior of a disk and "glue" the surfaces together along the boundary circles. (That is, merge the two boundary circles so they become just one circle.) To form the connected sum of more than two surfaces, successively take the connected sum of two of them at a time until they are all connected. In this sense, a genus ''g'' surface resembles the surface of ''g'' doughnuts stuck together side by side, or a
2-sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
with ''g'' handles attached. As examples, a genus zero surface (without boundary) is the
two-sphere A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
while a genus one surface (without boundary) is the ordinary torus. The surfaces of higher genus are sometimes called ''n''-holed tori (or, rarely, ''n''-fold tori). The terms
double torus In mathematics, a genus ''g'' surface (also known as a ''g''-torus or ''g''-holed torus) is a surface formed by the connected sum of ''g'' many tori: the interior of a disk is removed from each of ''g'' many tori and the boundaries of the ''g'' ...
and
triple torus In mathematics, a genus ''g'' surface (also known as a ''g''-torus or ''g''-holed torus) is a surface formed by the connected sum of ''g'' many tori: the interior of a disk is removed from each of ''g'' many tori and the boundaries of the ''g'' ...
are also occasionally used. The classification theorem for surfaces states that every
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
connected surface is topologically equivalent to either the sphere or the connect sum of some number of tori, disks, and real projective planes.


Toroidal polyhedra

Polyhedra with the topological type of a torus are called toroidal polyhedra, and have
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space ...
''V'' − ''E'' + ''F'' = 0. For any number of holes, the formula generalizes to ''V'' − ''E'' + ''F'' = 2 − 2''N'', where ''N'' is the number of holes. The term "toroidal polyhedron" is also used for higher-genus polyhedra and for immersions of toroidal polyhedra.


Automorphisms

The
homeomorphism group In mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in ...
(or the subgroup of diffeomorphisms) of the torus is studied in
geometric topology In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originated i ...
. Its mapping class group (the connected components of the homeomorphism group) is surjective onto the group \operatorname(n,\mathbb) of invertible integer matrices, which can be realized as linear maps on the universal covering space \mathbb^ that preserve the standard lattice \mathbb^ (this corresponds to integer coefficients) and thus descend to the quotient. At the level of
homotopy In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deforma ...
and
homology Homology may refer to: Sciences Biology *Homology (biology), any characteristic of biological organisms that is derived from a common ancestor * Sequence homology, biological homology between DNA, RNA, or protein sequences *Homologous chrom ...
, the mapping class group can be identified as the action on the first homology (or equivalently, first cohomology, or on the
fundamental group In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of ...
, as these are all naturally isomorphic; also the first cohomology group generates the
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
algebra: :\operatorname_(\mathbb^n) = \operatorname(\pi_1(X)) = \operatorname(\mathbb^n) = \operatorname(n,\mathbb). Since the torus is an Eilenberg–MacLane space ''K''(''G'', 1), its homotopy equivalences, up to homotopy, can be identified with automorphisms of the fundamental group); all homotopy equivalences of the torus can be realized by homeomorphisms – every homotopy equivalence is homotopic to a homeomorphism. Thus the short exact sequence of the mapping class group splits (an identification of the torus as the quotient of \mathbb^ gives a splitting, via the linear maps, as above): :1 \to \operatorname_0(\mathbb^n) \to \operatorname(\mathbb^n) \to \operatorname_(\mathbb^n) \to 1. The mapping class group of higher genus surfaces is much more complicated, and an area of active research.


Coloring a torus

The torus's
Heawood number In mathematics, the Heawood number of a surface is an upper bound for the number of colors that suffice to color any graph embedded in the surface. In 1890 Heawood proved for all surfaces ''except'' the sphere that no more than : H(S)=\left\lflo ...
is seven, meaning every graph that can be embedded on the torus has a chromatic number of at most seven. (Since the complete graph \mathsf can be embedded on the torus, and \chi (\mathsf) = 7, the upper bound is tight.) Equivalently, in a torus divided into regions, it is always possible to color the regions using no more than seven colors so that no neighboring regions are the same color. (Contrast with the
four color theorem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sh ...
for the
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * Planes (gen ...
.)


de Bruijn torus

In combinatorial mathematics, a ''de Bruijn torus'' is an array of symbols from an alphabet (often just 0 and 1) that contains every ''m''-by-''n''
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
exactly once. It is a torus because the edges are considered wraparound for the purpose of finding matrices. Its name comes from the De Bruijn sequence, which can be considered a special case where ''n'' is 1 (one dimension).


Cutting a torus

A solid torus of revolution can be cut by ''n'' (> 0) planes into at most :\beginn+2 \\ n-1\end +\beginn \\ n-1\end = \tfrac(n^3 + 3n^2 + 8n) parts. (This assumes the pieces may not be rearranged but must remain in place for all cuts.) The first 11 numbers of parts, for 0 ≤ ''n'' ≤ 10 (including the case of ''n'' = 0, not covered by the above formulas), are as follows: :1, 2, 6, 13, 24, 40, 62, 91, 128, 174, 230, ... .


See also


Notes

*''Nociones de Geometría Analítica y Álgebra Lineal'', , Author: Kozak Ana Maria, Pompeya Pastorelli Sonia, Verdanega Pedro Emilio, Editorial: McGraw-Hill, Edition 2007, 744 pages, language: Spanish *Allen Hatcher
''Algebraic Topology''
Cambridge University Press, 2002. . *V. V. Nikulin, I. R. Shafarevich. ''Geometries and Groups''. Springer, 1987. , .
"Tore (notion géométrique)" at ''Encyclopédie des Formes Mathématiques Remarquables''


References


External links


Creation of a torus
at
cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...

"4D torus"
Fly-through cross-sections of a four-dimensional torus
"Relational Perspective Map"
Visualizing high dimensional data with flat torus

*Archived a
Ghostarchive
and th
Wayback Machine
* {{Authority control Surfaces