Double Torus
In mathematics, a genus ''g'' surface (also known as a ''g''-torus or ''g''-holed torus) is a surface formed by the connected sum of ''g'' distinct tori: the interior of a disk is removed from each of ''g'' distinct tori and the boundaries of the ''g'' many disks are identified (glued together), forming a ''g''-torus. The genus of such a surface is ''g''. A genus ''g'' surface is a two-dimensional manifold. The classification theorem for surfaces states that every compact connected two-dimensional manifold is homeomorphic to either the sphere, the connected sum of tori, or the connected sum of real projective planes. Definition of genus The genus of a connected orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic ''χ'', via the relationship ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surface (topology)
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space. Topological surfaces are sometimes equipped with additional information, such as a Riemannian metric or a complex structure, that connects them to other disciplines within mathematics, such as differential geometry and complex analysis. The various mathematical notions of surface can be used to model surfaces in the physical world. In general In mathematics, a surface is a geometrical shape that resembles a deformed plane. The most familiar examples arise as boundaries ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sphere
A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the center (geometry), ''center'' of the sphere, and the distance is the sphere's ''radius''. The earliest known mentions of spheres appear in the work of the Greek mathematics, ancient Greek mathematicians. The sphere is a fundamental surface in many fields of mathematics. Spheres and nearly-spherical shapes also appear in nature and industry. Bubble (physics), Bubbles such as soap bubbles take a spherical shape in equilibrium. The Earth is spherical Earth, often approximated as a sphere in geography, and the celestial sphere is an important concept in astronomy. Manufactured items including pressure vessels and most curved mirrors and lenses are based on spheres. Spheres rolling, roll smoothly in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Genus (mathematics)
In mathematics, genus (: genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic \chi, via the relationship \chi=2-2g for closed surfaces, where g is the genus. For surfaces with b boundary components, the equation reads \chi=2-2g-b. In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann Surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed versions of the complex plane: locally near every point they look like patches of the complex plane, but the global topology can be quite different. For example, they can look like a sphere or a torus or several sheets glued together. Examples of Riemann surfaces include Graph of a function, graphs of Multivalued function, multivalued functions such as √''z'' or log(''z''), e.g. the subset of pairs with . Every Riemann surface is a Surface (topology), surface: a two-dimensional real manifold, but it contains more structure (specifically a Complex Manifold, complex structure). Conversely, a two-dimensional real manifold can be turned into a Riemann surface (usually in several inequivalent ways) if and only if it is orientable and Metrizabl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bolza Surface
In mathematics, the Bolza surface, alternatively, complex algebraic Bolza curve (introduced by ), is a compact Riemann surface of genus 2 with the highest possible order of the conformal automorphism group in this genus, namely GL_2(3) of order 48 (the general linear group of 2\times 2 matrices over the finite field \mathbb_3). Its full automorphism group (including reflections) is the semi-direct product GL_(3)\rtimes\mathbb_ of order 96. An affine model for the Bolza surface can be obtained as the locus of the equation :y^2=x^5-x in \mathbb C^2. The Bolza surface is the smooth completion of this affine curve. The Bolza curve also arises as a branched double cover of the Riemann sphere with branch points at the six vertices of a regular octahedron inscribed in the sphere. This can be seen from the equation above, because the right-hand side becomes zero or infinite at the six points x = 0, 1, i, -1, -i, \infty. The Bolza surface has attracted the attention of physicists, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Klein Bottle
In mathematics, the Klein bottle () is an example of a Orientability, non-orientable Surface (topology), surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down. More formally, the Klein bottle is a two-dimensional manifold on which one cannot define a normal vector at each point that varies continuous function, continuously over the whole manifold. Other related non-orientable surfaces include the Möbius strip and the real projective plane. While a Möbius strip is a surface with a Boundary (topology), boundary, a Klein bottle has no boundary. For comparison, a sphere is an orientable surface with no boundary. The Klein bottle was first described in 1882 by the mathematician Felix Klein. Construction The following square is a fundamental polygon of the Klein bottle. The idea is to 'glue' together the corresponding red and blue edges with the arrows matching, as in the diagr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fundamental Pair Of Periods
In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that defines a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined. Definition A fundamental pair of periods is a pair of complex numbers \omega_1,\omega_2 \in \Complex such that their ratio \omega_2 / \omega_1 is not real. If considered as vectors in \R^2, the two are linearly independent. The lattice generated by \omega_1 and \omega_2 is :\Lambda = \left\. This lattice is also sometimes denoted as \Lambda(\omega_1, \omega_2) to make clear that it depends on \omega_1 and \omega_2. It is also sometimes denoted by \Omega\vphantom or \Omega(\omega_1, \omega_2), or simply by (\omega_1, \omega_2). The two generators \omega_1 and \omega_2 are called the ''lattice basis''. The parallelogram with vertices (0, \omega_1, \omega_1+\omega_2, \omega_2) is called the ''fundamental parallelogram''. While a fundamental pair gen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Plane
In mathematics, the complex plane is the plane (geometry), plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal -axis, called the real axis, is formed by the real numbers, and the vertical -axis, called the imaginary axis, is formed by the imaginary numbers. The complex plane allows for a geometric interpretation of complex numbers. Under addition, they add like vector (geometry), vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or ' of the product is the product of the two absolute values, or moduli, and the angle or ' of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation. The complex plane is sometimes called the Argand plane or Gauss plane. Notational conventions Complex numbers In complex analysis, the complex numbers are customarily represented by the symbol , which can be sepa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weierstrass's Elliptic Functions
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions is also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script ''p''. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice. Symbol for Weierstrass \wp-function Motivation A cubic of the form C_^\mathbb=\ , where g_2,g_3\in\mathbb are complex numbers with g_2^3-27g_3^2\neq0, cannot be rationally parameterized. Yet one still wants to find a way to parameterize it. For the quadric K=\left\; the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine functi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Projective Plane
In mathematics, the complex projective plane, usually denoted or is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates :(Z_1,Z_2,Z_3) \in \C^3, \qquad (Z_1,Z_2,Z_3)\neq (0,0,0) where, however, the triples differing by an overall rescaling are identified: :(Z_1,Z_2,Z_3) \equiv (\lambda Z_1,\lambda Z_2, \lambda Z_3); \quad \lambda \in \C, \qquad \lambda \neq 0. That is, these are homogeneous coordinates in the traditional sense of projective geometry. Topology The Betti numbers of the complex projective plane are :1, 0, 1, 0, 1, 0, 0, ..... The middle dimension 2 is accounted for by the homology class of the complex projective line, or Riemann sphere, lying in the plane. The nontrivial homotopy groups of the complex projective plane are \pi_2=\pi_5=\mathbb. The fundamental group is trivial and all other higher homotopy groups are those of the 5-sphere, i.e. torsion. Algebraic geometry In ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature, "imaginary" complex numbers have a mathematical existence as firm as that of the real numbers, and they are fundamental tools in the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or complex coefficie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |