A topological quantum computer is a theoretical
quantum computer
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
proposed by Russian-American physicist
Alexei Kitaev
Alexei Yurievich Kitaev (russian: Алексей Юрьевич Китаев; born August 26, 1963) is a Russian–American professor of physics at the California Institute of Technology and permanent member of the Kavli Institute for Theoretical ...
in 1997. It employs
quasiparticle
In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum.
For exam ...
s in two-dimensional systems, called
anyon
In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchangi ...
s, whose
world line
The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics.
The concept of a "world line" is distinguished from con ...
s pass around one another to form
braids
A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair.
The simplest and most common version is a flat, solid, three-strande ...
in a three-dimensional
spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
(i.e., one temporal plus two spatial dimensions). These braids form the
logic gate
A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, ...
s that make up the computer. The advantage of a quantum computer based on quantum braids over using trapped quantum particles is that the former is much more stable. Small, cumulative perturbations can cause quantum states to
decohere
Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave ...
and introduce errors in the computation, but such small perturbations do not change the braids'
topological properties
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spac ...
. This is like the effort required to cut a string and reattach the ends to form a different braid, as opposed to a ball (representing an ordinary quantum particle in four-dimensional spacetime) bumping into a wall.
While the elements of a topological quantum computer originate in a purely mathematical realm, experiments in
fractional quantum Hall systems indicate these elements may be created in the real world using
semiconductor
A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
s made of
gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
at a temperature of near
absolute zero
Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
and subjected to strong
magnetic fields
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
.
Introduction
Anyon
In physics, an anyon is a type of quasiparticle that occurs only in two-dimensional systems, with properties much less restricted than the two kinds of standard elementary particles, fermions and bosons. In general, the operation of exchangi ...
s are quasiparticles in a two-dimensional space. Anyons are neither
fermion
In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s nor
boson
In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer s ...
s, but like fermions, they cannot occupy the same state. Thus, the
world lines
The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics.
The concept of a "world line" is distinguished from con ...
of two anyons cannot intersect or merge, which allows their paths to form stable braids in space-time. Anyons can form from excitations in a cold, two-dimensional electron gas in a very strong magnetic field, and carry fractional units of magnetic flux. This phenomenon is called the
fractional quantum Hall effect
The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of e^2/h. It is a property of a collective state in which elec ...
. In typical laboratory systems, the electron gas occupies a thin semiconducting layer sandwiched between layers of aluminium gallium arsenide.
When anyons are braided, the transformation of the quantum state of the system depends only on the topological class of the anyons' trajectories (which are classified according to the
braid group
A braid (also referred to as a plait) is a complex structure or pattern formed by interlacing two or more strands of flexible material such as textile yarns, wire, or hair.
The simplest and most common version is a flat, solid, three-strande ...
). Therefore, the quantum information which is stored in the state of the system is impervious to small errors in the trajectories.
In 2005,
Sankar Das Sarma
Sankar Das Sarma () is an India-born American theoretical condensed matter physicist, who has worked in the broad research topics of theoretical physics, condensed matter physics, statistical mechanics, quantum physics, and quantum information. ...
,
Michael Freedman
Michael Hartley Freedman (born April 21, 1951) is an American mathematician, at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional gen ...
, and
Chetan Nayak
Chetan may refer to:
* Chetan (name), an Indian and Nepalese given name
* Chetan, Iran, a village in Mazandaran Province, Iran
* Chetan, Kurdistan, a village in Kurdistan Province, Iran
* Lucian Chetan
Lucian of Samosata, '; la, Lucianus Sam ...
proposed a quantum Hall device that would realize a topological qubit. In a key development for topological quantum computers, in 2005 Vladimir J. Goldman, Fernando E. Camino, and Wei Zhou claimed to have created and observed the first experimental evidence for using a fractional quantum Hall effect to create actual anyons, although others have suggested their results could be the product of phenomena not involving anyons.
Non-abelian anyons, a species required for topological quantum computers, have yet to be experimentally confirmed. Possible experimental evidence has been found, but the conclusions remain contested. In 2018, scientists again claimed to have isolated the required Majorana particles, but the finding was retracted in 2021. ''Quanta Magazine'' stated in 2021 that "no one has convincingly shown the existence of even a single (Majorana zero-mode) quasiparticle".
Topological vs. standard quantum computer
Topological quantum computers are equivalent in computational power to other standard models of quantum computation, in particular to the
quantum circuit
In quantum information theory, a quantum circuit is a model for quantum computation, similar to classical circuits, in which a computation is a sequence of quantum gates, measurements, initializations of qubits to known values, and possibly othe ...
model and to the
quantum Turing machine
A quantum Turing machine (QTM) or universal quantum computer is an abstract machine used to model the effects of a quantum computer. It provides a simple model that captures all of the power of quantum computation—that is, any quantum algori ...
model.
That is, any of these models can efficiently simulate any of the others. Nonetheless, certain algorithms may be a more natural fit to the topological quantum computer model. For example, algorithms for evaluating the
Jones polynomial
In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynom ...
were first developed in the topological model, and only later converted and extended in the standard quantum circuit model.
Computations
To live up to its name, a topological quantum computer must provide the unique computation properties promised by a conventional quantum computer design, which uses trapped quantum particles. In 2000,
Michael H. Freedman,
Alexei Kitaev
Alexei Yurievich Kitaev (russian: Алексей Юрьевич Китаев; born August 26, 1963) is a Russian–American professor of physics at the California Institute of Technology and permanent member of the Kavli Institute for Theoretical ...
,
Michael J. Larsen
Michael Jeffrey Larsen is an American mathematician, a distinguished professor of mathematics at Indiana University Bloomington.. , and Zhenghan Wang proved that a topological quantum computer can, in principle, perform any computation that a conventional quantum computer can do, and vice versa.
They found that a conventional quantum computer device, given an error-free operation of its logic circuits, will give a solution with an absolute level of accuracy, whereas a topological quantum computing device with flawless operation will give the solution with only a finite level of accuracy. However, any level of precision for the answer can be obtained by adding more braid twists (logic circuits) to the topological quantum computer, in a simple linear relationship. In other words, a reasonable increase in elements (braid twists) can achieve a high degree of accuracy in the answer. Actual computation
ates Ates is a given name and a surname which may refer to:
* Roscoe Ates (1895–1962), American vaudeville performer, actor, comedian and musician
* Sonny Ates
Charles "Sonny" Ates (March 28, 1935 – October 25, 2010) was an American racecar driver. ...
are done by the edge states of a fractional quantum Hall effect. This makes models of one-dimensional anyons important. In one space dimension, anyons are defined algebraically.
Error correction and control
Even though quantum braids are inherently more stable than trapped quantum particles, there is still a need to control for error inducing thermal fluctuations, which produce random stray pairs of anyons which interfere with adjoining braids. Controlling these errors is simply a matter of separating the anyons to a distance where the rate of interfering strays drops to near zero. Simulating the dynamics of a topological quantum computer may be a promising method of implementing fault-tolerant quantum computation even with a standard quantum information processing scheme. Raussendorf, Harrington, and Goyal have studied one model, with promising simulation results.
Example: Computing with Fibonacci anyons
One of the prominent examples in topological quantum computing is with a system of
Fibonacci anyons
Fibonacci (; also , ; – ), also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano ('Leonardo the Traveller from Pisa'), was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western ...
. In the context of conformal field theory, fibonacci anyons are described by the Yang–Lee model, the SU(2) special case of the
Chern–Simons theory
The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type developed by Edward Witten. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and Jam ...
and
Wess–Zumino–Witten model
In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edwa ...
s. These anyons can be used to create generic gates for topological quantum computing. There are three main steps for creating a model:
* Choose our basis and restrict our
Hilbert space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
* Braid the anyons together
* Fuse the anyons at the end, and detect how they fuse in order to read the output of the system.
State preparation
Fibonacci anyons are defined by three qualities:
# They have a topological charge of
. In this discussion, we consider another charge called
which is the ‘vacuum’ charge if anyons are annihilated with each-other.
# Each of these anyons are their own antiparticle.
and
.
# If brought close to each-other, they will ‘fuse’ together in a nontrivial fashion. Specifically, the ‘fusion’ rules are:
##
##
##
# Many of the properties of this system can be explained similarly to that of two spin 1/2 particles. Particularly, we use the same
tensor product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W ...
and
direct sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more ...
operators.
The last ‘fusion’ rule can be extended this to a system of three anyons:
:
Thus, fusing three anyons will yield a final state of total charge
in 2 ways, or a charge of
in exactly one way. We use three states to define our basis.
However, because we wish to encode these three anyon states as superpositions of 0 and 1, we need to limit the basis to a two-dimensional Hilbert space. Thus, we consider only two states with a total charge of
. This choice is purely phenomenological. In these states, we group the two leftmost anyons into a 'control group', and leave the rightmost as a 'non-computational anyon'. We classify a
state as one where the control group has total 'fused' charge of
, and a state of
has a control group with a total 'fused' charge of
. For a more complete description, see Nayak.
Gates
Following the ideas above,
adiabatically
Adiabatic (from ''Gr.'' ἀ ''negative'' + διάβασις ''passage; transference'') refers to any process that occurs without heat transfer. This concept is used in many areas of physics and engineering. Notable examples are listed below.
A ...
braiding these anyons around each-other will result in a unitary transformation. These braid operators are a result of two subclasses of operators:
* The ''F'' matrix
* The ''R'' matrix
The ''R'' matrix can be conceptually thought of as the topological phase that is imparted onto the anyons during the braid. As the anyons wind around each-other, they pick up some phase due to the
Aharonov–Bohm effect.
The ''F'' matrix is a result of the physical rotations of the anyons. As they braid between each-other, it is important to realize that the bottom two anyons—the control group—will still distinguish the state of the qubit. Thus, braiding the anyons will change which anyons are in the control group, and therefore change the basis. We evaluate the anyons by always fusing the control group (the bottom anyons) together first, so exchanging which anyons these are will rotate the system. Because these anyons are
non-abelian, the order of the anyons (which ones are within the control group) will matter, and as such they will transform the system.
The complete braid operator can be derived as:
In order to mathematically construct the ''F'' and ''R'' operators, we can consider permutations of these F and R operators. We know that if we sequentially change the basis that we are operating on, this will eventually lead us back to the same basis. Similarly, we know that if we braid anyons around each-other a certain number of times, this will lead back to the same state. These axioms are called the
pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.
A pentagon may be simpl ...
al and
hexagonal axioms respectively as performing the operation can be visualized with a pentagon/hexagon of state transformations. Although mathematically difficult, these can be approached much more successfully visually.
With these braid operators, we can finally formalize the notion of braids in terms of how they act on our Hilbert space and construct arbitrary universal quantum gates.
[Explicit braids that perform particular quantum computations with Fibonacci anyons have been given by ]
See also
*
Ginzburg–Landau theory
In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenol ...
*
Husimi Q representation
The Husimi Q representation, introduced by Kôdi Husimi in 1940, is a quasiprobability distribution commonly used in quantum mechanics to represent the phase space distribution of a quantum state such as light in the phase space formulation. It i ...
*
Random matrix
In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathemat ...
*
Topological defect
A topological soliton occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topological ...
*
Toric code The toric code is a topological quantum error correcting code, and an example of a stabilizer code, defined on a two-dimensional spin lattice. It is the simplest and most well studied of the quantum double models. It is also the simplest example of ...
References
Further reading
*
*
*
*
*
*
*
*
{{Quantum mechanics topics
Quantum information science
Classes of computers
Models of computation
Topology
Quantum computing