Toll (gene)
   HOME

TheInfoList



OR:

Toll-like receptors (TLRs) are a class of
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s that play a key role in the
innate immune system The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is the ...
. They are single-pass membrane-spanning
receptors Receptor may refer to: *Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a n ...
usually expressed on
sentinel cell Sentinel cells refer to cells in the body's ''first line of defense'', which embed themselves in tissues such as skin. Sentinel cells can refer to specific antigen-presenting cells, such as: * Macrophages **Kupffer cells - ''in the liver'' **Lan ...
s such as
macrophages Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer ce ...
and
dendritic cells Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. The ...
, that recognize structurally conserved molecules derived from
microbes A microorganism, or microbe,, ''mikros'', "small") and ''organism'' from the el, ὀργανισμός, ''organismós'', "organism"). It is usually written as a single word but is sometimes hyphenated (''micro-organism''), especially in olde ...
. Once these microbes have reached physical barriers such as the skin or
intestinal tract The gastrointestinal tract (GI tract, digestive tract, alimentary canal) is the tract or passageway of the digestive system that leads from the mouth to the anus. The GI tract contains all the major organs of the digestive system, in humans ...
mucosa A mucous membrane or mucosa is a membrane that lines various cavities in the body of an organism and covers the surface of internal organs. It consists of one or more layers of epithelial cells overlying a layer of loose connective tissue. It is ...
, they are recognized by TLRs, which activate
immune cell White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
responses. The TLRs include
TLR1 Toll-like receptor 1 (TIL) is a member of the toll-like receptor family (TLR) of pattern recognition receptors of the innate immune system. TIL recognizes pathogen-associated molecular pattern with a specificity for gram-positive bacteria. TIL has ...
,
TLR2 Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the ''TLR2'' gene. TLR2 has also been designated as CD282 (cluster of differentiation 282). TLR2 is one of the toll-like receptors and plays a role in the immune sys ...
,
TLR3 Toll-like receptor 3 (TLR3) also known as CD283 (cluster of differentiation 283) is a protein that in humans is encoded by the ''TLR3'' gene. TLR3 is a member of the toll-like receptor family of pattern recognition receptors of the innate immune s ...
,
TLR4 Toll-like receptor 4 is a protein that in humans is encoded by the ''TLR4'' gene. TLR4 is a transmembrane protein, member of the toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. Its activation leads to an ...
,
TLR5 Toll-like receptor 5, also known as TLR5, is a protein which in humans is encoded by the ''TLR5'' gene. It is a member of the toll-like receptor (TLR) family. TLR5 is known to recognize bacterial flagellin from invading mobile bacteria. It has bee ...
,
TLR6 Toll-like receptor 6 is a protein that in humans is encoded by the ''TLR6'' gene. TLR6 is a transmembrane protein, member of toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. TLR6 acts in a heterodimer form ...
,
TLR7 Toll-like receptor 7, also known as TLR7, is a protein that in humans is encoded by the ''TLR7'' gene. Orthologs are found in mammals and birds. It is a member of the toll-like receptor (TLR) family and detects single stranded RNA. Function T ...
,
TLR8 Toll-like receptor 8 is a protein that in humans is encoded by the ''TLR8'' gene. TLR8 has also been designated as CD288 (cluster of differentiation 288). It is a member of the toll-like receptor (TLR) family. Function TLR8 seems to function d ...
,
TLR9 Toll-like receptor 9 is a protein that in humans is encoded by the ''TLR9'' gene. TLR9 has also been designated as CD289 (cluster of differentiation 289). It is a member of the toll-like receptor (TLR) family. TLR9 is an important receptor expresse ...
,
TLR10 Toll-like receptor 10 is a protein that in humans is encoded by the ''TLR10'' gene. TLR10 has also been designated as CD290 (cluster of differentiation 290). TLR10 has not been extensively studied because it is a pseudogene in mice, though all oth ...
,
TLR11 Toll-like receptor 11 (TLR11) is a protein that in mice and rats is encoded by the gene ''TLR11'', whereas in humans it is represented by a pseudogene. TLR11 belongs to the toll-like receptor (TLR) family and the interleukin-1 receptor/toll-like r ...
,
TLR12 Toll-like receptor 1 (TIL) is a member of the toll-like receptor family (TLR) of pattern recognition receptors of the innate immune system. TIL recognizes pathogen-associated molecular pattern with a specificity for gram-positive bacteria. TIL h ...
, and TLR13. Humans lack genes for TLR11, TLR12 and TLR13 and mice lack a functional gene for TLR10. TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 are located on the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
, whereas TLR3, TLR7, TLR8, and TLR9 are located in
intracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
vesicles Vesicle may refer to: ; In cellular biology or chemistry * Vesicle (biology and chemistry), a supramolecular assembly of lipid molecules, like a cell membrane * Synaptic vesicle ; In human embryology * Vesicle (embryology), bulge-like features o ...
(because they are sensors of
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
s). TLRs received their name from their similarity to the protein coded by the toll gene.


Function

The ability of the immune system to recognize
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioch ...
s that are broadly shared by
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s is, in part, due to the presence of
immune receptor An immune receptor (or immunologic receptor) is a receptor, usually on a cell membrane, which binds to a substance (for example, a cytokine) and causes a response in the immune system. Types The main receptors in the immune system are pattern rec ...
s called toll-like receptors (TLRs) that are expressed on the
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. B ...
s of
leukocyte White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
s including
dendritic cell Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. ...
s,
macrophages Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer ce ...
,
natural killer cell Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of known innate lymphoid cells (ILC) and repres ...
s, cells of the adaptive immunity
T cell A T cell is a type of lymphocyte. T cells are one of the important white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell r ...
s, and
B cell B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or ...
s, and non-immune cells (
epithelial Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellula ...
and
endothelial cells The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel ...
, and
fibroblasts A fibroblast is a type of biological cell that synthesizes the extracellular matrix and collagen, produces the structural framework ( stroma) for animal tissues, and plays a critical role in wound healing. Fibroblasts are the most common cells o ...
). The binding of
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
- either in the form of adjuvant used in
vaccination Vaccination is the administration of a vaccine to help the immune system develop immunity from a disease. Vaccines contain a microorganism or virus in a weakened, live or killed state, or proteins or toxins from the organism. In stimulating ...
s or in the form of invasive moieties during times of natural infection - to the TLR marks the key
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
events that ultimately lead to innate immune responses and the development of antigen-specific acquired immunity. Upon activation, TLRs recruit adaptor proteins (proteins that mediate other protein-protein interactions) within the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
of the
immune cell White blood cells, also called leukocytes or leucocytes, are the cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. All white blood cells are produced and derived from mult ...
to propagate the antigen-induced
signal transduction pathway Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular ...
. These recruited
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
are then responsible for the subsequent activation of other
downstream Downstream may refer to: * Downstream (bioprocess) * Downstream (manufacturing) * Downstream (networking) * Downstream (software development) * Downstream (petroleum industry) * Upstream and downstream (DNA), determining relative positions on DNA ...
proteins, including protein kinases (IKKi,
IRAK1 Interleukin-1 receptor-associated kinase 1 (IRAK-1) is an enzyme in humans encoded by the ''IRAK1'' gene. IRAK-1 plays an important role in the regulation of the expression of inflammatory genes by immune cells, such as monocytes and macrophages, ...
,
IRAK4 IRAK-4 (interleukin-1 receptor-associated kinase 4), in the IRAK family, is a protein kinase involved in signaling innate immune responses from Toll-like receptors. It also supports signaling from T-cell receptors. IRAK4 contains domain structures ...
, and TBK1) that further amplify the signal and ultimately lead to the upregulation or suppression of
genes In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
that orchestrate inflammatory responses and other transcriptional events. Some of these events lead to
cytokine Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrin ...
production, proliferation, and survival, while others lead to greater adaptive immunity. If the ligand is a bacterial factor, the pathogen might be
phagocytosed Phagocytosis () is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is c ...
and digested, and its
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. ...
s presented to
CD4+ T cells In molecular biology, CD4 (cluster of differentiation 4) is a glycoprotein that serves as a co-receptor for the T-cell receptor (TCR). CD4 is found on the surface of immune cells such as T helper cells, monocytes, macrophages, and dendritic ce ...
. In the case of a viral factor, the infected cell may shut off its protein synthesis and may undergo programmed cell death (
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
). Immune cells that have detected a virus may also release anti-viral factors such as
interferon Interferons (IFNs, ) are a group of signaling proteins made and released by host cells in response to the presence of several viruses. In a typical scenario, a virus-infected cell will release interferons causing nearby cells to heighten the ...
s. Toll-like receptors have also been shown to be an important link between innate and adaptive immunity through their presence in
dendritic cell Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. ...
s.
Flagellin Flagellin is a globular protein that arranges itself in a hollow cylinder to form the filament in a bacterial flagellum. It has a mass of about 30,000 to 60,000 daltons. Flagellin is the principal component of bacterial flagella, and is present ...
, a TLR5 ligand, induces cytokine secretion on interacting with TLR5 on human T cells.


Superfamily

TLRs are a type of
pattern recognition receptor Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed, mainly, by cells of ...
(PRR) and recognize molecules that are broadly shared by
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s but distinguishable from host molecules, collectively referred to as
pathogen-associated molecular pattern Pathogen-associated molecular patterns (PAMPs) are small molecular motifs conserved within a class of microbes. They are recognized by toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) in both plants and animals. A vast arra ...
s (PAMPs). In addition to the recognition of exogenous PAMPs, TLRs can also bind to endogenous
damage-associated molecular patterns Damage-associated molecular patterns (DAMPs) are molecules within cells that are a component of the innate immune response released from damaged or dying cells due to trauma or an infection by a pathogen. They are also known as danger-associated ...
(DAMPs) such as
heat shock proteins Heat shock proteins (HSP) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other stresses including expo ...
(HSPs) or plasma membrane constituents. TLRs together with the
Interleukin-1 receptor Interleukin-1 receptor (IL-1R) is a cytokine receptor which binds interleukin 1. Two forms of the receptor exist. The type I receptor is primarily responsible for transmitting the inflammatory effects of interleukin-1 (IL-1) while type II ...
s form a receptor
superfamily SUPERFAMILY is a database and search platform of structural and functional annotation for all proteins and genomes. It classifies amino acid sequences into known structural domains, especially into SCOP superfamilies. Domains are functional, str ...
, known as the "interleukin-1 receptor / toll-like receptor superfamily"; all members of this family have in common a so-called TIR (toll-IL-1 receptor) domain. Three subgroups of TIR domains exist. Proteins with subgroup 1 TIR domains are receptors for
interleukins Interleukins (ILs) are a group of cytokines (secreted proteins and signal molecules) that are expressed and secreted by white blood cells (leukocytes) as well as some other body cells. The human genome encodes more than 50 interleukins and relate ...
that are produced by
macrophage Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer cel ...
s,
monocyte Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and conventional dendritic cells. As a part of the vertebrate innate immune system monocytes also inf ...
s, and
dendritic cell Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. ...
s and all have extracellular
Immunoglobulin An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the ...
(Ig) domains. Proteins with subgroup 2 TIR domains are classical TLRs, and bind directly or indirectly to molecules of microbial origin. A third subgroup of proteins containing TIR domains consists of adaptor proteins that are exclusively
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
ic and mediate signaling from proteins of subgroups 1 and 2.


Extended family

TLRs are present in
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, ...
s as well as
invertebrate Invertebrates are a paraphyletic group of animals that neither possess nor develop a vertebral column (commonly known as a ''backbone'' or ''spine''), derived from the notochord. This is a grouping including all animals apart from the chordate ...
s. Molecular building blocks of the TLRs are represented in bacteria and in plants, and plant pattern recognition receptors are well known to be required for host defence against infection. The TLRs thus appear to be one of the most ancient, conserved components of the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
. In recent years TLRs were identified also in the mammalian nervous system. Members of the TLR family were detected on glia, neurons and on neural progenitor cells in which they regulate cell-fate decision. It has been estimated that most mammalian species have between ten and fifteen types of toll-like receptors. Thirteen TLRs (named simply TLR1 to TLR13) have been identified in humans and mice together, and equivalent forms of many of these have been found in other mammalian species. However, equivalents of certain TLR found in humans are not present in all mammals. For example, a gene coding for a protein analogous to TLR10 in humans is present in
mice A mouse ( : mice) is a small rodent. Characteristically, mice are known to have a pointed snout, small rounded ears, a body-length scaly tail, and a high breeding rate. The best known mouse species is the common house mouse (''Mus musculus' ...
, but appears to have been damaged at some point in the past by a
retrovirus A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase ...
. On the other hand, mice express TLRs 11, 12, and 13, none of which is represented in humans. Other mammals may express TLRs that are not found in humans. Other non-mammalian species may have TLRs distinct from mammals, as demonstrated by the anti-cell-wall TLR14, which is found in the
Takifugu ''Takifugu'' is a genus of pufferfish, often better known by the Japanese name . There are 25 species belonging to the genus ''Takifugu'' and most of these are native to salt and brackish waters of the northwest Pacific, but a few species are ...
pufferfish. This may complicate the process of using experimental animals as models of human innate immunity. Vertebrate TLRs are divided by similarity into the families of TLR 1/2/6/10/14/15, TLR 3, TLR 4, TLR 5, TLR 7/8/9, and TLR 11/12/13/16/21/22/23.


TLRs in ''Drosophila'' immunity

The involvement of toll signalling in immunity was first demonstrated in the fruit fly, ''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly" or "pomace fly". Starting with Ch ...
''. Fruit flies have only innate immune responses allowing studies to avoid interference of adaptive immune mechanisms on signal transduction. The fly response to fungal or bacterial infection occurs through two distinct signalling cascades, one of which is the toll pathway and the other is the immune deficiency pathway. The toll pathway is similar to mammalian TLR signalling, but unlike mammalian TLRs, toll is not activated directly by pathogen-associated molecular patterns (
PAMPs Pathogen-associated molecular patterns (PAMPs) are small molecular motifs conserved within a class of microbes. They are recognized by toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) in both plants and animals. A vast arra ...
). Its receptor ectodomain recognizes the cleaved form of the cytokine spätzle, which is secreted in the
haemolymph Hemolymph, or haemolymph, is a fluid, analogous to the blood in vertebrates, that circulates in the interior of the arthropod (invertebrate) body, remaining in direct contact with the animal's tissues. It is composed of a fluid plasma in which ...
as an inactive dimeric precursor. The toll receptor shares the cytoplasmatic TIR domain with mammalian TLRs, but the ectodomain and intracytoplasmatic tail are different. This difference might reflect a function of these receptors as cytokine receptors rather than PRRs. The toll pathway is activated by different stimuli, such as
Gram positive bacteria In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. Gram-positive bacte ...
, fungi and
virulence factors Virulence factors (preferably known as pathogenicity factors or effectors in plant science) are cellular structures, molecules and regulatory systems that enable microbial pathogens (bacteria, viruses, fungi, and protozoa) to achieve the followin ...
. First, the Spätzle processing enzyme (SPE) is activated in response to infection and cleaves
spätzle Spätzle (or spaetzle; ) is a type of pasta or dumpling made with eggs, typically serving as a side for meat dishes with gravy. Commonly associated with Swabia, it is also found in the cuisines of southern Germany and Austria, Switzerland, Hung ...
(''spz''). Cleaved spätzle then binds to the toll receptor and crosslinks its ectodomains. This triggers conformational changes in the receptor resulting in signalling through toll. From this point forward, the signalling cascade is very similar to mammalian signalling through TLRs. The toll-induced signalling complex (TICS) is composed of MyD88, Tube, and Pelle (the orthologue of mammalian IRAK). Signal from TICS is then transduced to Cactus (homologue of mammalian IκB), phosphorylated Cactus is polyubiquitylated and degraded, allowing nuclear translocation of DIF (dorsal-related immunity factor; a homologue of mammalian
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein complex that controls transcription of DNA, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular ...
) and induction of transcription of genes for
antimicrobial peptides Antimicrobial peptides (AMPs), also called host defence peptides (HDPs) are part of the innate immune response found among all classes of life. Fundamental differences exist between prokaryotic and eukaryotic cells that may represent targets for a ...
(AMPs) such as drosomycin. ''Drosophila'' have a total of 9 ''toll'' family and 6 ''spz'' family genes that interact with each other to differing degrees.


TLR2

TLR2 Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the ''TLR2'' gene. TLR2 has also been designated as CD282 (cluster of differentiation 282). TLR2 is one of the toll-like receptors and plays a role in the immune sys ...
has also been designated as CD282 (cluster of differentiation 282).


TLR3

TLR3 Toll-like receptor 3 (TLR3) also known as CD283 (cluster of differentiation 283) is a protein that in humans is encoded by the ''TLR3'' gene. TLR3 is a member of the toll-like receptor family of pattern recognition receptors of the innate immune s ...
does not use the MyD88 dependent pathway. Its ligand is retroviral double-stranded RNA (
dsRNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
), which activates the
TRIF TIR-domain-containing adapter-inducing interferon-β (TRIF) is an adapter in responding to activation of toll-like receptors (TLRs). It mediates the rather delayed cascade of two TLR-associated signaling cascades, where the other one is dependent ...
dependent signalling pathway. To explore the role of this pathway in retroviral reprograming, knock down techniques of TLR3 or TRIF were prepared, and results showed that only the TLR3 pathway is required for full induction of target gene expression by the retrovirus expression vector. This retroviral expression of four transcriptional factors (
Oct4 Oct-4 (octamer-binding transcription factor 4), also known as POU5F1 (POU domain, class 5, transcription factor 1), is a protein that in humans is encoded by the ''POU5F1'' gene. Oct-4 is a homeodomain transcription factor of the POU family. I ...
, Sox2, Klf4 and
c-Myc ''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' (MYC), ''l-myc'' (MYCL), and ''n-myc'' (MYCN). ''c-myc'' (also sometimes referre ...
; OSKM) induces
pluripotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
in somatic cells. This is supported by study, which shows, that efficiency and amount of human iPSC generation, using retroviral vectors, is reduced by knockdown of the pathway with peptide inhibitors or
shRNA A short hairpin RNA or small hairpin RNA (shRNA/Hairpin Vector) is an artificial RNA molecule with a tight hairpin turn that can be used to silence target gene expression via RNA interference (RNAi). Expression of shRNA in cells is typically acco ...
knockdown of TLR3 or its adaptor protein TRIF. Taken together, stimulation of TLR3 causes great changes in chromatin remodeling and nuclear reprogramming, and activation of inflammatory pathways is required for these changes, induction of pluripotency genes and generation of human induced pluripotent stem cells (iPSC) colonies.


TLR11

As noted above, human cells do not express
TLR11 Toll-like receptor 11 (TLR11) is a protein that in mice and rats is encoded by the gene ''TLR11'', whereas in humans it is represented by a pseudogene. TLR11 belongs to the toll-like receptor (TLR) family and the interleukin-1 receptor/toll-like r ...
, but mice cells do. Mouse-specific TLR11 recognizes uropathogenic ''
E.coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Esche ...
'' and the apicomplexan parasite ''
Toxoplasma gondii ''Toxoplasma gondii'' () is an obligate intracellular parasitic protozoan (specifically an apicomplexan) that causes toxoplasmosis. Found worldwide, ''T. gondii'' is capable of infecting virtually all warm-blooded animals, but felids, such as d ...
''. With ''Toxoplasma'' its ligand is the protein profilin and the ligand for ''E. coli'' is
flagellin Flagellin is a globular protein that arranges itself in a hollow cylinder to form the filament in a bacterial flagellum. It has a mass of about 30,000 to 60,000 daltons. Flagellin is the principal component of bacterial flagella, and is present ...
. The flagellin from the enteropathogen ''Salmonella'' is also recognized by TLR11. As mouse TLR11 is able to recognize ''Salmonella'' effectively, normal mice do not get infected by oral ''Salmonella'' Typhi, which causes food- and waterborne gastroenteritis and
typhoid fever Typhoid fever, also known as typhoid, is a disease caused by '' Salmonella'' serotype Typhi bacteria. Symptoms vary from mild to severe, and usually begin six to 30 days after exposure. Often there is a gradual onset of a high fever over several ...
in humans. TLR11 deficient
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
, on the other hand, are efficiently infected. As a result, this knockout mouse can act as a
disease model ''Medical model'' is the term coined by psychiatrist R. D. Laing in his ''The Politics of the Family and Other Essays'' (1971), for the "set of procedures in which all doctors are trained". It includes complaint, history, physical examinati ...
of human typhoid fever.


Summary of known mammalian TLRs

Toll-like receptors bind and become activated by different ligands, which, in turn, are located on different types of organisms or structures. They also have different adapters to respond to activation and are located sometimes at the cell surface and sometimes to internal
cell compartment Cellular compartments in cell biology comprise all of the closed parts within the cytosol of a eukaryotic cell (biology), cell, usually surrounded by a single or lipid bilayer, double lipid layer cell membrane, membrane. These compartments are ...
s. Furthermore, they are expressed by different types of leucocytes or other cell types:


Ligands

Because of the specificity of toll-like receptors (and other innate immune receptors) they cannot easily be changed in the course of evolution, these receptors recognize molecules that are constantly associated with threats (i.e., pathogen or cell stress) and are highly specific to these threats (i.e., cannot be mistaken for self molecules that are normally expressed under physiological conditions). Pathogen-associated molecules that meet this requirement are thought to be critical to the pathogen's function and difficult to change through mutation; they are said to be evolutionarily conserved. Somewhat conserved features in pathogens include bacterium, bacterial cell-surface lipopolysaccharides (LPS), lipoproteins, lipopeptides, and lipoarabinomannan; proteins such as flagellin from bacterial flagella; double-stranded RNA of viruses; or the unmethylated CpG site, CpG islands of bacterial and viral DNA; and also of the CpG islands found in the promoters of eukaryotic DNA; as well as certain other RNA and DNA molecules. For most of the TLRs, Ligand (biochemistry), ligand recognition specificity has now been established by gene targeting (also known as "gene knockout"): a technique by which individual genes may be selectively deleted in mice. See the table above for a summary of known TLR ligands.


Endogenous ligands

The stereotypic inflammatory response provoked by toll-like receptor activation has prompted speculation that endogenous activators of toll-like receptors might participate in autoimmune diseases. TLRs have been suspected of binding to host molecules including fibrinogen (involved in blood clotting), heat shock proteins (HSPs), HMGB1, extracellular matrix components and self DNA (it is normally degraded by nucleases, but under inflammatory and autoimmune conditions it can form a complex with endogenous proteins, become resistant to these nucleases and gain access to endosomal TLRs as TLR7 or TLR9). These endogenous ligands are usually produced as a result of non-physiological cell death.


Signaling

TLRs are believed to function as protein dimer, dimers. Though most TLRs appear to function as homodimers, TLR2 forms heterodimers with TLR1 or TLR6, each dimer having a different ligand specificity. TLRs may also depend on other co-receptors for full ligand sensitivity, such as in the case of TLR4's recognition of lipopolysaccharide, LPS, which requires MD-2. CD14 and LPS-Binding Protein (Lipopolysaccharide-Binding Protein, LBP) are known to facilitate the presentation of LPS to MD-2. A set of endosomal TLRs comprising TLR3, TLR7, TLR8 and TLR9 recognize
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
derived from viruses as well as endogenous nucleic acids in context of pathogenic events. Activation of these receptor leads to production of inflammatory cytokines as well as type I interferons (interferon type I) to help fight viral infection. The adapter proteins and kinases that mediate TLR signaling have also been targeted. In addition, random germline mutagenesis with ENU has been used to decipher the TLR signaling pathways. When activated, TLRs recruit adapter molecules within the cytoplasm of cells to propagate a signal. Four adapter molecules are known to be involved in signaling. These proteins are known as MyD88, TIRAP (also called Mal),
TRIF TIR-domain-containing adapter-inducing interferon-β (TRIF) is an adapter in responding to activation of toll-like receptors (TLRs). It mediates the rather delayed cascade of two TLR-associated signaling cascades, where the other one is dependent ...
, and TRAM (TRIF-related adaptor molecule). TLR signaling is divided into two distinct signaling pathways, the MyD88-dependent and TRIF-dependent pathway.


MyD88-dependent pathway

The MyD88-dependent response occurs on dimerization of TLRs, and is used by every TLR except TLR3. Its primary effect is activation of NFκB and Mitogen-activated protein kinase. Ligand binding and conformational change that occurs in the receptor recruits the adaptor protein MyD88, a member of the TLR-4, TIR family. MyD88 then recruits
IRAK4 IRAK-4 (interleukin-1 receptor-associated kinase 4), in the IRAK family, is a protein kinase involved in signaling innate immune responses from Toll-like receptors. It also supports signaling from T-cell receptors. IRAK4 contains domain structures ...
,
IRAK1 Interleukin-1 receptor-associated kinase 1 (IRAK-1) is an enzyme in humans encoded by the ''IRAK1'' gene. IRAK-1 plays an important role in the regulation of the expression of inflammatory genes by immune cells, such as monocytes and macrophages, ...
and IRAK2. IRAK kinases then phosphorylate and activate the protein TRAF6, which in turn polyubiquinates the protein TAK1, as well as itself to facilitate binding to IKK2, IKK-β. On binding, TAK1 phosphorylates IKK-β, which then phosphorylates IκB causing its degradation and allowing NFκB to diffuse into the cell nucleus and activate transcription and consequent induction of inflammatory cytokines.


TRIF-dependent pathway

Both TLR3 and TLR4 use the TRIF-dependent pathway, which is triggered by
dsRNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
and LPS, respectively. For TLR3, dsRNA leads to activation of the receptor, recruiting the adaptor
TRIF TIR-domain-containing adapter-inducing interferon-β (TRIF) is an adapter in responding to activation of toll-like receptors (TLRs). It mediates the rather delayed cascade of two TLR-associated signaling cascades, where the other one is dependent ...
. TRIF activates the kinases TBK1 and RIPK1, which creates a branch in the signaling pathway. The TRIF/TBK1 signaling complex phosphorylates IRF3 allowing its translocation into the nucleus and production of Interferon type I. Meanwhile, activation of RIPK1 causes the polyubiquitination and activation of TAK1 and NFκB transcription in the same manner as the MyD88-dependent pathway. TLR signaling ultimately leads to the induction or suppression of genes that orchestrate the inflammatory response. In all, thousands of genes are activated by TLR signaling, and collectively, the TLRs constitute one of the most pleiotropic yet tightly regulated gateways for gene modulation. TLR4 is the only TLR that uses all four adaptors. Complex consisting of TLR4, MD2 and LPS recruits TIR domain-containing adaptors TIRAP and MyD88 and thus initiates activation of NFκB (early phase) and MAPK. TLR4-MD2-LPS complex then undergoes endocytosis and in endosome it forms a signalling complex with TRAM and TRIF adaptors. This TRIF-dependent pathway again leads to IRF3 activation and production of type I interferons, but it also activates late-phase NFκB activation. Both late and early phase activation of NFκB is required for production of inflammatory cytokines.


Medical relevance

Imiquimod (cardinally used in dermatology) is a TLR7 agonist, and its successor resiquimod, is a TLR7 and TLR8 agonist. Recently, resiquimod has been explored as an agent for cancer immunotherapy, acting through stimulation of tumor-associated macrophages. Several TLR ligands are in clinical development or being tested in animal models as Immunologic adjuvant, vaccine adjuvants, with the first clinical use in humans in a recombinant zoster vaccine, herpes zoster vaccine in 2017, which contains a monophosphoryl lipid A component. TLR7 messenger RNA expression levels in dairy animals in a natural outbreak of foot-and-mouth disease have been reported.
TLR4 Toll-like receptor 4 is a protein that in humans is encoded by the ''TLR4'' gene. TLR4 is a transmembrane protein, member of the toll-like receptor family, which belongs to the pattern recognition receptor (PRR) family. Its activation leads to an ...
has been shown to be important for the long-term side-effects of opioids. Its activation leads to downstream release of inflammatory modulators including Tumor necrosis factor-alpha, TNF-α and IL1B, IL-1β, and constant low-level release of these modulators is thought to reduce the efficacy of opioid drug treatment with time, and is involved in opioid tolerance, hyperalgesia and allodynia. Morphine induced TLR4 activation attenuates pain suppression by opioids and enhances the development of opioid Drug tolerance, tolerance and addiction, drug abuse, and other negative side effects such as respiratory depression and hyperalgesia. Drugs that block the action of TNF-α or IL-1β have been shown to increase the analgesic effects of opioids and reduce the development of tolerance and other side-effects, and this has also been demonstrated with drugs that block TLR4 itself. The "unnatural" enantiomers of opioid drugs such as (+)-morphine and (+)-naloxone lack affinity for opioid receptors, still produce the same activity at TLR4 as their "normal" enantiomers. So, "unnatural" entianomers of opioids such as (+)-naloxone, can be used to block the TLR4 activity of opioid analgesic drugs without having any affinity for μ-opioid receptor


Discovery

When microbes were first recognized as the cause of infectious diseases, it was immediately clear that multicellular organisms must be capable of recognizing them when infected and, hence, capable of recognizing molecules unique to microbes. A large body of literature, spanning most of the last century, attests to the search for the key molecules and their receptors. More than 100 years ago, Richard Friedrich Johannes Pfeiffer, Richard Pfeiffer, a student of Robert Koch, coined the term "endotoxin" to describe a substance produced by Gram-negative bacteria that could provoke fever and Shock (circulatory), shock in model organism, experimental animals. In the decades that followed, endotoxin was chemically characterized and identified as a lipopolysaccharide (LPS) produced by most Gram-negative bacteria. This lipopolysaccharide is an integral part of the gram-negative membrane and is released upon destruction of the bacterium. Other molecules (bacterial lipopeptides,
flagellin Flagellin is a globular protein that arranges itself in a hollow cylinder to form the filament in a bacterial flagellum. It has a mass of about 30,000 to 60,000 daltons. Flagellin is the principal component of bacterial flagella, and is present ...
, and unmethylated DNA) were shown in turn to provoke host responses that are normally protective. However, these responses can be detrimental if they are excessively prolonged or intense. It followed logically that there must be receptors for such molecules, capable of alerting the host to the presence of infection, but these remained elusive for many years. Toll-like receptors are now counted among the key molecules that alert the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
to the presence of microbial infections. The prototypic member of the family, the ''toll'' receptor (; Tl) in the fruit fly ''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the "vinegar fly" or "pomace fly". Starting with Ch ...
'', was discovered in 1985 by 1995 Nobel Laureates Christiane Nüsslein-Volhard and Eric Wieschaus and colleagues. It was known for its developmental function in embryogenesis by establishing the Dorsum (biology), dorsal-ventral axis. It was named after Christiane Nüsslein-Volhard's 1985 exclamation, "" ("That's amazing!"), in reference to the underdeveloped ventral portion of a fruit fly larva. It was Receptor cloning, cloned by the laboratory of Kathryn Anderson in 1988. In 1996, ''toll'' was found by Jules A. Hoffmann and his colleagues to have an essential role in the fly's immunity to Fungal infection in animals, fungal infection, which it achieved by activating the synthesis of antimicrobial peptides. The first reported human toll-like receptor was described by Nomura and colleagues in 1994, mapped to a chromosome by Taguchi and colleagues in 1996. Because the immune function of toll in ''Drosophila'' was not then known, it was assumed that TIL (now known as TLR1) might participate in mammalian development. However, in 1991 (prior to the discovery of TIL) it was observed that a molecule with a clear role in immune function in mammals, the interleukin-1 (IL-1) receptor, also had homology to drosophila toll; the cytoplasmic portions of both molecules were similar. In 1997, Charles Janeway and Ruslan Medzhitov showed that a toll-like receptor now known as TLR4 could, when artificially ligated using antibodies, induce the activation of certain genes necessary for initiating an adaptive immune system, adaptive immune response. TLR 4 function as an LPS sensing receptor was discovered by Bruce A. Beutler and colleagues. These workers used positional cloning to prove that mice that could not respond to LPS had mutations that abolished the function of TLR4. This identified TLR4 as one of the key components of the receptor for LPS. In turn, the other TLR genes were ablated in mice by gene targeting, largely in the laboratory of Shizuo Akira and colleagues. Each TLR is now believed to detect a discrete collection of molecules – some of microbial origin, and some products of cell damage – and to signal the presence of infections. Plant homologs of ''toll'' were discovered by Pamela Ronald in 1995 (rice XA21) and Thomas Boller in 2000 (''Arabidopsis'' FLS2). In 2011, Beutler and Hoffmann were awarded the Nobel Prize in Medicine or Physiology for their work. Hoffmann and Akira received the Canada Gairdner International Award in 2011.


Notes and references


See also

* NOD-like receptor * Immunologic adjuvant * RIG-I-like receptor


External links

* *
TollML: Toll-like receptors and ligands database
at University of Munich
The Toll-Like Receptor Family of Innate Immune Receptors (pdf)

Toll-Like receptor Pathway

BioScience Animations
{{Pattern recognition receptors Developmental genetics Insect immunity LRR proteins Signal transduction Toll-like receptors