Taylor Coefficient
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after
Brook Taylor Brook Taylor (18 August 1685 – 29 December 1731) was an English mathematician best known for creating Taylor's theorem and the Taylor series, which are important for their use in mathematical analysis. Life and work Brook Taylor w ...
, who introduced them in 1715. A Taylor series is also called a Maclaurin series, when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century. The partial sum formed by the first terms of a Taylor series is a polynomial of degree that is called the th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally better as increases.
Taylor's theorem In calculus, Taylor's theorem gives an approximation of a ''k''-times differentiable function around a given point by a polynomial of degree ''k'', called the ''k''th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the t ...
gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the infinite sequence of the Taylor polynomials. A function may differ from the sum of its Taylor series, even if its Taylor series is convergent. A function is analytic at a point if it is equal to the sum of its Taylor series in some
open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
(or open disk in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
) containing . This implies that the function is analytic at every point of the interval (or disk).


Definition

The Taylor series of a real or complex-valued function that is infinitely differentiable at a real or complex number is the power series :f(a)+\frac (x-a)+ \frac (x-a)^2+\frac(x-a)^3+ \cdots, where denotes the
factorial In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \t ...
of . In the more compact
sigma notation In mathematics, summation is the addition of a sequence of any kind of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matr ...
, this can be written as : \sum_ ^ \frac (x-a)^, where denotes the th derivative of evaluated at the point . (The derivative of order zero of is defined to be itself and and are both defined to be 1.) When , the series is also called a Maclaurin series.


Examples

The Taylor series of any polynomial is the polynomial itself. The Maclaurin series of is the geometric series :1 + x + x^2 + x^3 + \cdots. So, by substituting for , the Taylor series of at is :1 - (x-1) + (x-1)^2 - (x-1)^3 + \cdots. By integrating the above Maclaurin series, we find the Maclaurin series of , where denotes the
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
: :-x - \tfracx^2 - \tfracx^3 - \tfracx^4 - \cdots. The corresponding Taylor series of at is :(x-1) - \tfrac(x-1)^2 + \tfrac(x-1)^3 - \tfrac(x-1)^4 + \cdots, and more generally, the corresponding Taylor series of at an arbitrary nonzero point is: :\ln a + \frac (x - a) - \frac\frac + \cdots. The Maclaurin series of the exponential function is :\begin \sum_^\infty \frac &= \frac + \frac + \frac + \frac + \frac + \frac+ \cdots \\ &= 1 + x + \frac + \frac + \frac + \frac + \cdots. \end The above expansion holds because the derivative of with respect to is also , and equals 1. This leaves the terms in the numerator and in the denominator of each term in the infinite sum.


History

The ancient Greek philosopher Zeno of Elea considered the problem of summing an infinite series to achieve a finite result, but rejected it as an impossibility; the result was Zeno's paradox. Later, Aristotle proposed a philosophical resolution of the paradox, but the mathematical content was apparently unresolved until taken up by
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
, as it had been prior to Aristotle by the Presocratic Atomist Democritus. It was through Archimedes's method of exhaustion that an infinite number of progressive subdivisions could be performed to achieve a finite result. Liu Hui independently employed a similar method a few centuries later. In the 14th century, the earliest examples of the use of Taylor series and closely related methods were given by Madhava of Sangamagrama. Though no record of his work survives, writings of later
Indian mathematicians chronology of Indian mathematicians spans from the Indus Valley civilisation and the Vedas to Modern India. Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians ...
suggest that he found a number of special cases of the Taylor series, including those for the trigonometric functions of
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
, cosine, tangent, and
arctangent In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains). Spec ...
. Madhava founded the Kerala school of astronomy and mathematics, and during the following two centuries its scholars developed further series expansions and rational approximations. In the 17th century, James Gregory also worked in this area and published several Maclaurin series. It was not until 1715 however that a general method for constructing these series for all functions for which they exist was finally provided by
Brook Taylor Brook Taylor (18 August 1685 – 29 December 1731) was an English mathematician best known for creating Taylor's theorem and the Taylor series, which are important for their use in mathematical analysis. Life and work Brook Taylor w ...
, after whom the series are now named. The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who published the special case of the Taylor result in the mid-18th century.


Analytic functions

If is given by a convergent power series in an open disk centred at in the complex plane (or an interval in the real line), it is said to be analytic in this region. Thus for in this region, is given by a convergent power series :f(x) = \sum_^\infty a_n(x-b)^n. Differentiating by the above formula times, then setting gives: :\frac = a_n and so the power series expansion agrees with the Taylor series. Thus a function is analytic in an open disk centred at if and only if its Taylor series converges to the value of the function at each point of the disk. If is equal to the sum of its Taylor series for all in the complex plane, it is called entire. The polynomials, exponential function , and the trigonometric functions sine and cosine, are examples of entire functions. Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if is far from . That is, the Taylor series diverges at if the distance between and is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions include: # The partial sums (the Taylor polynomials) of the series can be used as approximations of the function. These approximations are good if sufficiently many terms are included. #Differentiation and integration of power series can be performed term by term and is hence particularly easy. #An analytic function is uniquely extended to a
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
on an open disk in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
. This makes the machinery of
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
available. #The (truncated) series can be used to compute function values numerically, (often by recasting the polynomial into the
Chebyshev form The Chebyshev polynomials are two sequences of polynomials related to the trigonometric functions, cosine and sine functions, notated as T_n(x) and U_n(x). They can be defined in several equivalent ways, one of which starts with trigonometric ...
and evaluating it with the Clenshaw algorithm). #Algebraic operations can be done readily on the power series representation; for instance, Euler's formula follows from Taylor series expansions for trigonometric and exponential functions. This result is of fundamental importance in such fields as
harmonic analysis Harmonic analysis is a branch of mathematics concerned with the representation of Function (mathematics), functions or signals as the Superposition principle, superposition of basic waves, and the study of and generalization of the notions of Fo ...
. #Approximations using the first few terms of a Taylor series can make otherwise unsolvable problems possible for a restricted domain; this approach is often used in physics.


Approximation error and convergence

Pictured is an accurate approximation of around the point . The pink curve is a polynomial of degree seven: :\sin\left( x \right) \approx x - \frac + \frac - \frac.\! The error in this approximation is no more than . For a full cycle centered at the origin () the error is less than 0.08215. In particular, for , the error is less than 0.000003. In contrast, also shown is a picture of the natural logarithm function and some of its Taylor polynomials around . These approximations converge to the function only in the region ; outside of this region the higher-degree Taylor polynomials are ''worse'' approximations for the function. The ''error'' incurred in approximating a function by its th-degree Taylor polynomial is called the ''remainder'' or '' residual'' and is denoted by the function . Taylor's theorem can be used to obtain a bound on the size of the remainder. In general, Taylor series need not be convergent at all. And in fact the set of functions with a convergent Taylor series is a meager set in the Fréchet space of smooth functions. And even if the Taylor series of a function does converge, its limit need not in general be equal to the value of the function . For example, the function : f(x) = \begin e^ & \text x \neq 0 \\ mu 0 & \text x = 0 \end is infinitely differentiable at , and has all derivatives zero there. Consequently, the Taylor series of about is identically zero. However, is not the zero function, so does not equal its Taylor series around the origin. Thus, is an example of a non-analytic smooth function. In real analysis, this example shows that there are infinitely differentiable functions whose Taylor series are ''not'' equal to even if they converge. By contrast, the
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
s studied in
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
always possess a convergent Taylor series, and even the Taylor series of meromorphic functions, which might have singularities, never converge to a value different from the function itself. The complex function , however, does not approach 0 when approaches 0 along the imaginary axis, so it is not continuous in the complex plane and its Taylor series is undefined at 0. More generally, every sequence of real or complex numbers can appear as
coefficient In mathematics, a coefficient is a multiplicative factor in some term of a polynomial, a series, or an expression; it is usually a number, but may be any expression (including variables such as , and ). When the coefficients are themselves var ...
s in the Taylor series of an infinitely differentiable function defined on the real line, a consequence of Borel's lemma. As a result, the radius of convergence of a Taylor series can be zero. There are even infinitely differentiable functions defined on the real line whose Taylor series have a radius of convergence 0 everywhere. A function cannot be written as a Taylor series centred at a singularity; in these cases, one can often still achieve a series expansion if one allows also negative powers of the variable ; see
Laurent series In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion c ...
. For example, can be written as a Laurent series.


Generalization

There is, however, a generalization of the Taylor series that does converge to the value of the function itself for any
bounded Boundedness or bounded may refer to: Economics * Bounded rationality, the idea that human rationality in decision-making is bounded by the available information, the cognitive limitations, and the time available to make the decision * Bounded e ...
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
on , using the calculus of finite differences. Specifically, one has the following theorem, due to Einar Hille, that for any , :\lim_\sum_^\infty \frac\frac = f(a+t). Here is the th finite difference operator with step size . The series is precisely the Taylor series, except that divided differences appear in place of differentiation: the series is formally similar to the Newton series. When the function is analytic at , the terms in the series converge to the terms of the Taylor series, and in this sense generalizes the usual Taylor series. In general, for any infinite sequence , the following power series identity holds: :\sum_^\infty\frac\Delta^na_i = e^\sum_^\infty\fraca_. So in particular, :f(a+t) = \lim_ e^\sum_^\infty f(a+jh) \frac. The series on the right is the expectation value of , where is a Poisson-distributed
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
that takes the value with probability . Hence, :f(a+t) = \lim_ \int_^\infty f(a+x)dP_(x). The
law of large numbers In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times. According to the law, the average of the results obtained from a large number of trials shou ...
implies that the identity holds.


List of Maclaurin series of some common functions

Several important Maclaurin series expansions follow. All these expansions are valid for complex arguments .


Exponential function

The exponential function e^x (with base ) has Maclaurin series :e^ = \sum^_ \frac = 1 + x + \frac + \frac + \cdots . It converges for all . The exponential
generating function In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary seri ...
of the Bell numbers is the exponential function of the predecessor of the exponential function: :\exp exp(x)-1= \sum_^ \fracx^


Natural logarithm

The
natural logarithm The natural logarithm of a number is its logarithm to the base of the mathematical constant , which is an irrational and transcendental number approximately equal to . The natural logarithm of is generally written as , , or sometimes, if ...
(with base ) has Maclaurin series :\begin \ln(1-x) &= - \sum^_ \fracn = -x - \frac2 - \frac3 - \cdots , \\ \ln(1+x) &= \sum^\infty_ (-1)^\fracn = x - \frac2 + \frac3 - \cdots . \end They converge for , x, < 1. (In addition, the series for converges for , and the series for converges for .)


Geometric series

The geometric series and its derivatives have Maclaurin series :\begin \frac &= \sum^\infty_ x^n \\ \frac &= \sum^\infty_ nx^\\ \frac &= \sum^\infty_ \frac x^. \end All are convergent for , x, < 1. These are special cases of the binomial series given in the next section.


Binomial series

The binomial series is the power series (1+x)^\alpha = \sum_^\infty \binom x^n whose coefficients are the generalized
binomial coefficient In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the t ...
s \binom = \prod_^n \frack = \frac. (If , this product is an empty product and has value 1.) It converges for , x, < 1 for any real or complex number . When , this is essentially the infinite geometric series mentioned in the previous section. The special cases and give the square root function and its
inverse Inverse or invert may refer to: Science and mathematics * Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence * Additive inverse (negation), the inverse of a number that, when ad ...
: \begin (1+x)^\frac &= 1 + \tfracx - \tfracx^2 + \tfracx^3 - \tfracx^4 + \tfracx^5 - \cdots &&=\sum^_ \frac x^n, \\ (1+x)^ &= 1 -\tfracx + \tfracx^2 - \tfracx^3 + \tfracx^4 - \tfracx^5 + \cdots &&=\sum^_ \frac x^n. \end When only the linear term is retained, this simplifies to the binomial approximation.


Trigonometric functions

The usual trigonometric functions and their inverses have the following Maclaurin series: :\begin \sin x &= \sum^_ \frac x^ &&= x - \frac + \frac - \cdots && \text x\\ pt\cos x &= \sum^_ \frac x^ &&= 1 - \frac + \frac - \cdots && \text x\\ pt\tan x &= \sum^_ \frac x^ &&= x + \frac + \frac + \cdots && \text, x, < \frac\\ pt\sec x &= \sum^_ \frac x^ &&=1+\frac+\frac+\cdots && \text, x, < \frac\\ pt\arcsin x &= \sum^_ \frac x^ &&=x+\frac+\frac+\cdots && \text, x, \le 1\\ pt\arccos x &=\frac-\arcsin x\\&=\frac- \sum^_ \frac x^&&=\frac-x-\frac-\frac-\cdots&& \text, x, \le 1\\ pt\arctan x &= \sum^_ \frac x^ &&=x-\frac + \frac-\cdots && \text, x, \le 1,\ x\neq\pm i \end All angles are expressed in radians. The numbers appearing in the expansions of are the Bernoulli numbers. The in the expansion of are Euler numbers.


Hyperbolic functions

The hyperbolic functions have Maclaurin series closely related to the series for the corresponding trigonometric functions: :\begin \sinh x &= \sum^_ \frac &&= x + \frac + \frac + \cdots && \text x\\ pt\cosh x &= \sum^_ \frac &&= 1 + \frac + \frac + \cdots && \text x\\ pt\tanh x &= \sum^_ \frac x^ &&= x-\frac+\frac-\frac+\cdots && \text, x, < \frac\\ pt\operatorname x &= \sum^_ \frac x^ &&=x - \frac + \frac - \cdots && \text, x, \le 1\\ pt\operatorname x &= \sum^_ \frac &&=x + \frac + \frac +\cdots && \text, x, \le 1,\ x\neq\pm 1 \end The numbers appearing in the series for are the Bernoulli numbers.


Polylogarithmic functions

The polylogarithms have these defining identities: :\text_(x) = \sum_^ \frac x^ :\text_(x) = \sum_^ \frac x^ The Legendre chi functions are defined as follows: :\chi_(x) = \sum_^ \frac x^ :\chi_(x) = \sum_^ \frac x^ And the formulas presented below are called ''inverse tangent integrals'': :\text_(x) = \sum_^ \frac x^ :\text_(x) = \sum_^ \frac x^ In statistical thermodynamics these formulas are of great importance.


Elliptic functions

The complete elliptic integrals of first kind K and of second kind E can be defined as follows: :\fracK(x) = \sum_^ \fracx^ :\fracE(x) = \sum_^ \fracx^ The Jacobi theta functions describe the world of the elliptic modular functions and they have these Taylor series: :\vartheta_(x) = 1 + 2\sum_^ x^ :\vartheta_(x) = 1 + 2\sum_^ (-1)^ x^ The regular partition number sequence P(n) has this generating function: :\vartheta_(x)^\vartheta_(x)^\biggl frac\biggr = \sum_^ P(n)x^n = \prod_^ \frac The strict partition number sequence Q(n) has that generating function: :\vartheta_(x)^\vartheta_(x)^\biggl frac\biggr = \sum_^ Q(n)x^n = \prod_^ \frac


Calculation of Taylor series

Several methods exist for the calculation of Taylor series of a large number of functions. One can attempt to use the definition of the Taylor series, though this often requires generalizing the form of the coefficients according to a readily apparent pattern. Alternatively, one can use manipulations such as substitution, multiplication or division, addition or subtraction of standard Taylor series to construct the Taylor series of a function, by virtue of Taylor series being power series. In some cases, one can also derive the Taylor series by repeatedly applying integration by parts. Particularly convenient is the use of computer algebra systems to calculate Taylor series.


First example

In order to compute the 7th degree Maclaurin polynomial for the function :f(x)=\ln(\cos x),\quad x\in\left(-\frac,\frac\right) , one may first rewrite the function as :f(x)=\ln\bigl(1+(\cos x-1)\bigr)\!. The Taylor series for the natural logarithm is (using the
big O notation Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Lan ...
) :\ln(1+x) = x - \frac2 + \frac3 + \left(x^4\right)\! and for the cosine function :\cos x - 1 = -\frac2 + \frac - \frac + \left(x^8\right)\!. The latter series expansion has a zero constant term, which enables us to substitute the second series into the first one and to easily omit terms of higher order than the 7th degree by using the big notation: :\beginf(x)&=\ln\bigl(1+(\cos x-1)\bigr)\\ &=(\cos x-1) - \tfrac12(\cos x-1)^2 + \tfrac13(\cos x-1)^3+ \left((\cos x-1)^4\right)\\ &=\left(-\frac2 + \frac - \frac +\left(x^8\right)\right)-\frac12\left(-\frac2+\frac+\left(x^6\right)\right)^2+\frac13\left(-\frac2+O\left(x^4\right)\right)^3 + \left(x^8\right)\\ & =-\frac2 + \frac-\frac - \frac8 + \frac - \frac +O\left(x^8\right)\\ & =- \frac2 - \frac - \frac+O\left(x^8\right). \end\! Since the cosine is an
even function In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power seri ...
, the coefficients for all the odd powers have to be zero.


Second example

Suppose we want the Taylor series at 0 of the function : g(x)=\frac.\! We have for the exponential function : e^x = \sum^\infty_ \frac =1 + x + \frac + \frac + \frac+\cdots\! and, as in the first example, : \cos x = 1 - \frac + \frac - \cdots\! Assume the power series is : \frac = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots\! Then multiplication with the denominator and substitution of the series of the cosine yields : \begin e^x &= \left(c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots\right)\cos x\\ &=\left(c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4x^4 + \cdots\right)\left(1 - \frac + \frac - \cdots\right)\\&=c_0 - \fracx^2 + \fracx^4 + c_1x - \fracx^3 + \fracx^5 + c_2x^2 - \fracx^4 + \fracx^6 + c_3x^3 - \fracx^5 + \fracx^7 + c_4x^4 +\cdots \end\! Collecting the terms up to fourth order yields : e^x =c_0 + c_1x + \left(c_2 - \frac\right)x^2 + \left(c_3 - \frac\right)x^3+\left(c_4-\frac+\frac\right)x^4 + \cdots\! The values of c_i can be found by comparison of coefficients with the top expression for e^x, yielding: : \frac=1 + x + x^2 + \frac + \frac + \cdots.\!


Third example

Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand as a Taylor series in , we use the known Taylor series of function : : e^x = \sum^\infty_ \frac =1 + x + \frac + \frac + \frac+\cdots. Thus, : \begin(1+x)e^x &= e^x + xe^x = \sum^\infty_ \frac + \sum^\infty_ \frac = 1 + \sum^\infty_ \frac + \sum^\infty_ \frac \\ &= 1 + \sum^\infty_ \frac + \sum^\infty_ \frac =1 + \sum^\infty_\left(\frac + \frac\right)x^n \\ &= 1 + \sum^\infty_\fracx^n\\ &= \sum^\infty_\fracx^n.\end


Taylor series as definitions

Classically, algebraic functions are defined by an algebraic equation, and transcendental functions (including those discussed above) are defined by some property that holds for them, such as a differential equation. For example, the exponential function is the function which is equal to its own derivative everywhere, and assumes the value 1 at the origin. However, one may equally well define an analytic function by its Taylor series. Taylor series are used to define functions and "
operator Operator may refer to: Mathematics * A symbol indicating a mathematical operation * Logical operator or logical connective in mathematical logic * Operator (mathematics), mapping that acts on elements of a space to produce elements of another ...
s" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm. In other areas, such as formal analysis, it is more convenient to work directly with the power series themselves. Thus one may define a solution of a differential equation ''as'' a power series which, one hopes to prove, is the Taylor series of the desired solution.


Taylor series in several variables

The Taylor series may also be generalized to functions of more than one variable with :\begin T(x_1,\ldots,x_d) &= \sum_^\infty \cdots \sum_^\infty \frac\,\left(\frac\right)(a_1,\ldots,a_d) \\ &= f(a_1, \ldots,a_d) + \sum_^d \frac (x_j - a_j) + \frac \sum_^d \sum_^d \frac (x_j - a_j)(x_k - a_k) \\ & \qquad \qquad + \frac \sum_^d\sum_^d\sum_^d \frac (x_j - a_j)(x_k - a_k)(x_l - a_l) + \cdots \end For example, for a function f(x,y) that depends on two variables, and , the Taylor series to second order about the point is :f(a,b) +(x-a) f_x(a,b) +(y-b) f_y(a,b) + \frac\Big( (x-a)^2 f_(a,b) + 2(x-a)(y-b) f_(a,b) +(y-b)^2 f_(a,b) \Big) where the subscripts denote the respective
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
s. A second-order Taylor series expansion of a scalar-valued function of more than one variable can be written compactly as :T(\mathbf) = f(\mathbf) + (\mathbf - \mathbf)^\mathsf D f(\mathbf) + \frac (\mathbf - \mathbf)^\mathsf \left \ (\mathbf - \mathbf) + \cdots, where is the gradient of evaluated at and is the Hessian matrix. Applying the multi-index notation the Taylor series for several variables becomes :T(\mathbf) = \sum_\frac \left(f\right)(\mathbf), which is to be understood as a still more abbreviated multi-index version of the first equation of this paragraph, with a full analogy to the single variable case.


Example

In order to compute a second-order Taylor series expansion around point of the function :f(x,y)=e^x\ln(1+y), one first computes all the necessary partial derivatives: :\begin f_x &= e^x\ln(1+y) \\ ptf_y &= \frac \\ ptf_ &= e^x\ln(1+y) \\ ptf_ &= - \frac \\ ptf_ &=f_ = \frac . \end Evaluating these derivatives at the origin gives the Taylor coefficients :\begin f_x(0,0) &= 0 \\ f_y(0,0) &=1 \\ f_(0,0) &=0 \\ f_(0,0) &=-1 \\ f_(0,0) &=f_(0,0)=1. \end Substituting these values in to the general formula :\begin T(x,y) = &f(a,b) +(x-a) f_x(a,b) +(y-b) f_y(a,b) \\ &+\frac\left( (x-a)^2f_(a,b) + 2(x-a)(y-b)f_(a,b) +(y-b)^2 f_(a,b) \right)+ \cdots \end produces :\begin T(x,y) &= 0 + 0(x-0) + 1(y-0) + \frac\Big( 0(x-0)^2 + 2(x-0)(y-0) + (-1)(y-0)^2 \Big) + \cdots \\ &= y + xy - \frac + \cdots \end Since is analytic in , we have :e^x\ln(1+y)= y + xy - \frac + \cdots, \qquad , y, < 1.


Comparison with Fourier series

The trigonometric
Fourier series A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p ...
enables one to express a periodic function (or a function defined on a closed interval ) as an infinite sum of trigonometric functions (
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is oppo ...
s and cosines). In this sense, the Fourier series is analogous to Taylor series, since the latter allows one to express a function as an infinite sum of
powers Powers may refer to: Arts and media * ''Powers'' (comics), a comic book series by Brian Michael Bendis and Michael Avon Oeming ** ''Powers'' (American TV series), a 2015–2016 series based on the comics * ''Powers'' (British TV series), a 200 ...
. Nevertheless, the two series differ from each other in several relevant issues: * The finite truncations of the Taylor series of about the point are all exactly equal to at . In contrast, the Fourier series is computed by integrating over an entire interval, so there is generally no such point where all the finite truncations of the series are exact. * The computation of Taylor series requires the knowledge of the function on an arbitrary small neighbourhood of a point, whereas the computation of the Fourier series requires knowing the function on its whole domain interval. In a certain sense one could say that the Taylor series is "local" and the Fourier series is "global". * The Taylor series is defined for a function which has infinitely many derivatives at a single point, whereas the Fourier series is defined for any integrable function. In particular, the function could be nowhere differentiable. (For example, could be a Weierstrass function.) * The convergence of both series has very different properties. Even if the Taylor series has positive convergence radius, the resulting series may not coincide with the function; but if the function is analytic then the series converges pointwise to the function, and
uniformly Uniform distribution may refer to: * Continuous uniform distribution * Discrete uniform distribution * Uniform distribution (ecology) * Equidistributed sequence In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be ...
on every compact subset of the convergence interval. Concerning the Fourier series, if the function is square-integrable then the series converges in quadratic mean, but additional requirements are needed to ensure the pointwise or uniform convergence (for instance, if the function is periodic and of class C1 then the convergence is uniform). * Finally, in practice one wants to approximate the function with a finite number of terms, say with a Taylor polynomial or a partial sum of the trigonometric series, respectively. In the case of the Taylor series the error is very small in a neighbourhood of the point where it is computed, while it may be very large at a distant point. In the case of the Fourier series the error is distributed along the domain of the function.


See also

* Asymptotic expansion *
Generating function In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary seri ...
*
Laurent series In mathematics, the Laurent series of a complex function f(z) is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion c ...
* Madhava series * Newton's divided difference interpolation * Padé approximant * Puiseux series * Shift operator


Notes


References

* * *


External links

* * {{Authority control Real analysis Complex analysis Series expansions