HOME

TheInfoList



OR:

The Super Proton–Antiproton Synchrotron (or SpS, also known as the Proton–Antiproton Collider) was a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
that operated at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
from 1981 to 1991. To operate as a proton-
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exis ...
collider the
Super Proton Synchrotron The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, in circumference, straddling the border of France and Switzerland near Geneva, Switzerland. History The SPS was de ...
(SPS) underwent substantial modifications, altering it from a one beam synchrotron to a two-beam collider. The main experiments at the accelerator were UA1 and UA2, where the W and Z bosons were discovered in 1983.
Carlo Rubbia Carlo Rubbia (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN. Early life and educatio ...
and
Simon van der Meer Simon van der Meer (24 November 19254 March 2011) was a Dutch particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z parti ...
received the 1984
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
for their contributions to the SpS-project, which led to the discovery of the W and Z bosons. Other experiments conducted at the SpS were UA4, UA5 and UA8.


Background

Around 1968 Sheldon Glashow,
Steven Weinberg Steven Weinberg (; May 3, 1933 – July 23, 2021) was an American theoretical physicist and Nobel laureate in physics for his contributions with Abdus Salam and Sheldon Glashow to the unification of the weak force and electromagnetic interact ...
, and
Abdus Salam Mohammad Abdus Salam Salam adopted the forename "Mohammad" in 1974 in response to the anti-Ahmadiyya decrees in Pakistan, similarly he grew his beard. (; ; 29 January 192621 November 1996) was a Punjabis, Punjabi Pakistani theoretical physici ...
came up with the
electroweak theory In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
, which unified
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
and
weak interactions In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction, ...
, and for which they shared the 1979
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
. The theory postulated the existence of W and Z bosons. It was experimentally established in two stages, the first being the discovery of
neutral currents Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step towar ...
in neutrino scattering by the
Gargamelle Gargamelle was a heavy liquid bubble chamber detector in operation at CERN between 1970 and 1979. It was designed to detect neutrinos and antineutrinos, which were produced with a beam from the Proton Synchrotron (PS) between 1970 and 1976, b ...
collaboration at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
, a process that required the existence of a neutral particle to carry the weak force — the Z boson. The results from the Gargamelle collaboration made calculations of the mass of the W and Z bosons possible. It was predicted that the W boson had a mass value in the range of 60 to 80 GeV/c2, and the Z boson in the range from 75 to 92 GeV/c2 – energies too large to be accessible by any accelerator in operation at that time. The second stage of establishing the electroweak theory would be the discovery of the W and Z bosons, requiring the design and construction of a more powerful accelerator. During the late 70s CERN's prime project was the construction of the Large Electron–Positron Collider (LEP). Such a machine was ideal to produce and measure the properties of W and Z bosons. However, due to the pressure to find the W and Z bosons, the CERN community felt like it could not wait for the construction of LEP — a new accelerator was needed — the construction of which could not be at the expense of LEP. In 1976
Carlo Rubbia Carlo Rubbia (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN. Early life and educatio ...
, Peter McIntyre and David Cline proposed to modify a proton accelerator — at that time a proton accelerator was already running at
Fermilab Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been opera ...
and one was under construction at CERN (SPS) — into a proton
antiproton The antiproton, , (pronounced ''p-bar'') is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The exis ...
collider. Such machine required only a single vacuum chamber, unlike a proton-proton collider that requires separate chambers due to magnetic fields oppositely directed. Since the protons and antiprotons are of opposite charge, but of same energy ''E'', they can circulate in the same magnetic field in opposite directions, providing head-on collisions between the protons and the antiprotons at a total center-of-mass energy \sqrt=2E. The scheme was proposed both at
Fermilab Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been opera ...
in the United States, and at CERN, and was ultimately adopted at CERN for the
Super Proton Synchrotron The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, in circumference, straddling the border of France and Switzerland near Geneva, Switzerland. History The SPS was de ...
(SPS). W and Z bosons are produced mainly as a result of quark-antiquark annihilation. In the
parton model In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation (a parton shower) produced from quantum chromodynamics (QCD) processes ...
the momentum of a proton is shared between the proton's constituencies: a portion of the proton momentum is carried by the
quarks A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
, and the remainder by gluons. It will not be sufficient to accelerate protons to a momentum equal the mass of the boson, as each quark will only carry a portion of the momentum. To produce bosons in the estimated intervals of 60 to 80 GeV (W boson) and 75 to 92 GeV (Z boson), one would therefore need a proton-antiproton collider with a center-of-mass energy of approximately six times the boson masses, about 500-600 GeV. The design of the SpS was determined by the need to detect Z \rightarrow e^+e^-. As the
cross-section Cross section may refer to: * Cross section (geometry) ** Cross-sectional views in architecture & engineering 3D *Cross section (geology) * Cross section (electronics) * Radar cross section, measure of detectability * Cross section (physics) **Abs ...
for Z production at ~600 GeV is ~1,6 nb, and the fraction of Z \rightarrow e^+e^- decay is ~3%, a luminosity of L=2,5 · 1029 cm−2s−1 would give an event rate of ~1 per day. To achieve such luminosity one would need an antiproton source capable of producing ~3·1010 antiprotons each day, distributed in a few bunches with angular and momentum acceptance of the SPS.


History

The SPS was originally designed as a synchrotron for protons, to accelerate one proton beam to 450 GeV and extract it from the accelerator for fixed-target experiments. However, already before the construction period of the SPS the idea of using it as a proton-antiproton accelerator came up. The first proposal for a proton-antiproton collider seems to have been made by
Gersh Budker Gersh Itskovich Budker (Герш Ицкович Будкер), also named Andrey Mikhailovich Budker (1 May 1918 – 4 July 1977), was a Soviet physicist, specialized in nuclear physics and accelerator physics. Biography He was elected a Correspo ...
and
Alexander Skrinsky Alexander Nikolayevich Skrinsky (Скринский, Александр Николаевич) (born 15 January 1936) is a Russian nuclear physicist. He was born in Orenburg and was educated at the high school in the city of Gorky and then at the ...
at
Orsay Orsay () is a commune in the Essonne department in Île-de-France in northern France. It is located in the southwestern suburbs of Paris, France, from the centre of Paris. A fortified location of the Chevreuse valley since the 8th century ...
in 1966, based on Budker's new idea of
electron cooling Electron cooling is a method to shrink the emittance (size, divergence, and energy spread) of a charged particle beam without removing particles from the beam. Since the number of particles remains unchanged and the space coordinates and their der ...
. In 1972
Simon van der Meer Simon van der Meer (24 November 19254 March 2011) was a Dutch particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z parti ...
published the theory of
stochastic cooling Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual char ...
, for which he later received the 1984
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
. The theory was confirmed in the
Intersecting Storage Rings The ISR (standing for "Intersecting Storage Rings") was a particle accelerator at CERN. It was the world's first hadron collider, and ran from 1971 to 1984, with a maximum center of mass energy of 62 GeV. From its initial startup, the collider ...
at CERN in 1974. While electron cooling might have led to the idea of a proton-antiproton collider, it was eventually stochastic cooling that was used in the preaccelerators to prepare antiprotons for the SpS. Meanwhile, the discovery of
neutral currents Weak neutral current interactions are one of the ways in which subatomic particles can interact by means of the weak force. These interactions are mediated by the Z boson. The discovery of weak neutral currents was a significant step towar ...
in the
Gargamelle Gargamelle was a heavy liquid bubble chamber detector in operation at CERN between 1970 and 1979. It was designed to detect neutrinos and antineutrinos, which were produced with a beam from the Proton Synchrotron (PS) between 1970 and 1976, b ...
experiment at CERN triggered
Carlo Rubbia Carlo Rubbia (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN. Early life and educatio ...
and collaborators proposal for a proton-antiproton collider. In 1978 the project was approved by CERN Council, and the first collisions occurred in July 1981. The first run lasted until 1986, and after a substantial upgrade it continued operation from 1987 to 1991. The collider was shut down at the end of 1991, as it was no longer competitive with the 1,5 TeV proton-antiproton collider at Fermilab, which had been in operation since 1987.


Operation

Between 1981 and 1991 SPS would operate part of the year as a synchrotron, accelerating a single beam for fixed-target experiments, and part of the year as a collider — SpS.


Modifications of the SPS for collider operation

The requirements of a storage ring as the SpS, in which beams must circulate for many hours, are much more demanding than those of a pulsed synchrotron, as the SPS. After the SpS was decided in 1978, the following modifications were done on the SPS: * To transfer the antiprotons from the PS to the SPS, a new beam line was constructed, along with a new injection system for counter-clockwise injection. * As SPS was designed for a 14 GeV/c injection and the new injection would be 26 GeV/c, the injection system had to be upgraded * Improvement of the SPS beam vacuum system. The design vacuum of 2·10−7 Torr was adequate for SPS — as a synchrotron the beam would be accelerated to 450 GeV and extracted during a very short time. The SpS would have a storage time of 15 to 20 hours, and the vacuum had to be improved by almost three orders of magnitude. * The accelerating radiofrequency system had to undergo modifications for simultaneous accelerations of protons and antiprotons. The proton and antiproton bunches had to be precisely synchronized for collisions to occur at the center of the detectors. * Beam diagnostics had to be adapted to low beam intensities. New devices were added, such as directional couplers for independent observation of protons and antiprotons. * Construction of huge experimental areas for experiments ( UA1 and UA2). The beam abort system had to be moved to make place for the experiments.


Antiproton production

The creation and storage of antiprotons in sufficient numbers were one of the biggest challenges in the construction of the SpS. The production of antiprotons required use of existing CERN infrastructure, such as the Proton Synchrotron (PS) and the
Antiproton Accumulator The Antiproton Accumulator (AA) was an infrastructure connected to the Proton–Antiproton Collider (SpS) – a modification of the Super Proton Synchrotron (SPS) – at CERN. The AA was built in 1979 and 1980, for the production and accumulation ...
(AA). Antiprotons were produced by directing an intense proton beam at a momentum of 26 GeV/c from the PS onto a target for production. The emerging burst of antiprotons had a momentum of 3.5 GeV/c, and was magnetically selected and steered into the AA, and stored for many hours. The main obstacle was the large dispersion of momenta and angles of the antiprotons emerging from the target. The method of reducing the beam dimensions is called
stochastic cooling Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual char ...
, a method discovered by
Simon van der Meer Simon van der Meer (24 November 19254 March 2011) was a Dutch particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z parti ...
. Simply put it is a feedback system based on the fact that all beams are particulate and that therefore, on a microscopic level, the density within a given volume will be subject to statistical fluctuations. The aim of discovering W and Z bosons put certain demands on the luminosity of the collider, and the experiment therefore required an antiproton source capable of delivering 3·1010 antiprotons each day into a few bunches within the angular and momentum acceptance of the SPS. The accumulation of the antiprotons in the AA could take several days. The upgrade of 1986—1988 allowed for a tenfold increase in the stacking rate of the AA. A second ring, called the
Antiproton Collector The Antiproton Collector (AC) was part of the antiparticle factory at CERN designed to decelerate and store antimatter, to study the properties of antimatter and to create atoms of antihydrogen. It was built in 1986 around the existing Antiproto ...
(AC) was built around the AA.


Filling

After the antiprotons had been stacked up in the AA, the PS and SpS would prepare for a fill. First, three proton bunches, each containing ~1011 protons, were accelerated to 26 GeV in the PS, and injected into the SpS. Second, three bunches of antiproton, each containing ~1010 antiprotons were extracted from the AA and injected into the PS. In the PS the antiproton bunches were accelerated to 26 GeV in the opposite direction of that of the protons, and injected into the SpS. The injections was timed as to ensure that bunch crossings in the accelerator would happen in the center of the detectors, UA1 and UA2. The transfer efficiency from the AA to the SpS was about 80%. In the first run, 1981–1986, the SpS accelerated three bunches of proton and three bunches of antiprotons. After the stacking rate of the antiprotons was increased in the upgrade, the number of both protons and antiprotons injected into the collider was increased from three to six.


Acceleration

When injected into the SpS, both beams were accelerated to 315 GeV. It would then pass into storage for 15 to 20 hours of physics data-taking whilst the AA resumed accumulation in preparation for the next fill. As three bunches of protons and three bunches of antiprotons circulated in the same vacuum chamber, they would meet in six points. UA1 and UA2 were placed in two of these meeting points. Electrostatic separators were used to achieve separation at the unused crossing points away from the experiments Until 1983 the centre-of-mass energy was limited to 546 GeV due to
resistive The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallel ...
heating of the magnetic coils. The addition of further cooling allowed the machine energy to be pushed up to 630 GeV in 1984.


Obtaining collisions at 900 GeV

When operated as an accelerator for fixed-target experiments, the SPS can accelerate a beam to 450 GeV, before the beam is extracted within seconds (or a small fraction of a second when used to accelerate a bunches for injection into
LHC The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundred ...
). However, when operated as a collider, the beam has to be stored in the beam line for hours and the
dipole magnet A dipole magnet is the simplest type of magnet. It has two poles, one north and one south. Its magnetic field lines form simple closed loops which emerge from the north pole, re-enter at the south pole, then pass through the body of the magnet. T ...
s of the accelerator must keep a constant magnetic field for a longer time. To prevent overheating the magnets, the SpS would only accelerate the beams to a center-of-mass energy of 315 GeV. This limit could however be overcome by ramping the magnets between 100 GeV and the machines maximum capacity of 450 GeV. The SpS would accelerate the beams to 450 GeV, keeping them as this energy for a time limited by the heating of the magnets, then decelerate the beams to 100 GeV. The pulsing was operated in such a way that the average dispersion of power in the magnets did not exceed the level of operation at 315 GeV. The SpS occasionally ran pulsed operation after 1985, obtaining collisions at a center-of-mass energy of 900 GeV.


Findings and Discoveries

The SpS began its operation in July 1981, and by January 1983 the discovery of the W and Z boson by the UA1 and
UA2 experiment The Underground Area 2 (UA2) experiment was a high-energy physics experiment at the Proton-Antiproton Collider (SpS) — a modification of the Super Proton Synchrotron (SPS) — at CERN. The experiment ran from 1981 until 1990, and its main obje ...
were announced.
Carlo Rubbia Carlo Rubbia (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN. Early life and educatio ...
, spokesperson for
UA1 experiment The UA1 experiment (an abbreviation of Underground Area 1) was a high-energy physics experiment that ran at CERN's Proton-Antiproton Collider (SpS), a modification of the one-beam Super Proton Synchrotron (SPS). The data was recorded between 19 ...
, and
Simon van der Meer Simon van der Meer (24 November 19254 March 2011) was a Dutch particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z parti ...
received the 1984
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
for, as stated in the press release from the
Nobel Committee A Nobel Committee is a working body responsible for most of the work involved in selecting Nobel Prize laureates. There are five Nobel Committees, one for each Nobel Prize. Four of these committees (for prizes in physics, chemistry, physio ...
, for "(...) their decisive contribution to the large project, which led to the discovery of the field particles W and Z (...)". The prize was given to Carlo Rubbia for his "(...) idea to convert an existent large accelerator into a storage ring for protons and antiprotons", i.e. the conception of the SpS, and to Simon van der Meer for his "(...) ingenious method for dense packing and storage of proton, now applied for antiprotons", i.e. devise of the technology enabling the
Antiproton Accumulator The Antiproton Accumulator (AA) was an infrastructure connected to the Proton–Antiproton Collider (SpS) – a modification of the Super Proton Synchrotron (SPS) – at CERN. The AA was built in 1979 and 1980, for the production and accumulation ...
— stochastic cooling. The conception, construction and operation of the SpS was considered a great technical achievement in itself. Before the SpS was commissioned, it was debated whether the machine would work at all, or if beam-beam effects on the bunched beams would prohibit an operation with high luminosity. The SpS proved that the beam-beam effect on bunched beams could be mastered, and that hadron colliders were excellent tools for experiments in particle physics. In such regard, it lay the ground work of
LHC The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundred ...
, the next generation hadron collider at
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Gene ...
.


See also

*
Super Proton Synchrotron The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, in circumference, straddling the border of France and Switzerland near Geneva, Switzerland. History The SPS was de ...
* List of Super Proton Synchrotron experiments *
UA1 experiment The UA1 experiment (an abbreviation of Underground Area 1) was a high-energy physics experiment that ran at CERN's Proton-Antiproton Collider (SpS), a modification of the one-beam Super Proton Synchrotron (SPS). The data was recorded between 19 ...
*
UA2 experiment The Underground Area 2 (UA2) experiment was a high-energy physics experiment at the Proton-Antiproton Collider (SpS) — a modification of the Super Proton Synchrotron (SPS) — at CERN. The experiment ran from 1981 until 1990, and its main obje ...
*
Stochastic cooling Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual char ...
* W and Z bosons


References


External links

*
"The W and Z particles: a personal recollection" by spokesperson for UA2, Pierre DarriulatDi Lella, Luigi; Rubbia, Carlo (2015) "The Discovery of the W and Z Particles" in ''60 Years of CERN Experiments and Discoveries''. CERN Document Server: World Scientific

Schmidt, Rudiger (2017) "The CERN SPS proton-antiproton collider" in ''Challenges and Goals for Accelerators in the XXI Century''. World Scientific
{{DEFAULTSORT:Super Proton-Antiproton Synchrotron CERN accelerators Laboratories in France Laboratories in Switzerland CERN facilities CERN Particle physics facilities