HOME
*



picture info

Super Proton Synchrotron
The Super Proton Synchrotron (SPS) is a particle accelerator of the synchrotron type at CERN. It is housed in a circular tunnel, in circumference, straddling the border of France and Switzerland near Geneva, Switzerland. History The SPS was designed by a team led by John Adams, director-general of what was then known as Laboratory II. Originally specified as a 300 GeV accelerator, the SPS was actually built to be capable of 400 GeV, an operating energy it achieved on the official commissioning date of 17 June 1976. However, by that time, this energy had been exceeded by Fermilab, which reached an energy of 500 GeV on 14 May of that year. The SPS has been used to accelerate protons and antiprotons, electrons and positrons (for use as the injector for the Large Electron–Positron Collider (LEP)), and heavy ions. From 1981 to 1991, the SPS operated as a hadron (more precisely, proton–antiproton) collider (as such it was called SpS), when its beams provided the data ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alpha Magnetic Spectrometer
The Alpha Magnetic Spectrometer (AMS-02) is a particle physics experiment module that is mounted on the International Space Station (ISS).Kristine Rainey (April 2, 2013)Alpha Magnetic Spectrometer (AMS): How It Works NASA. Retrieved June 2, 2019. The experiment is a recognized CERN experiment (RE1). The module is a detector that measures antimatter in cosmic rays; this information is needed to understand the formation of the Universe and search for evidence of dark matter. The principal investigator is Nobel laureate particle physicist Samuel Ting. The launch of flight STS-134 carrying AMS-02 took place on May 16, 2011, and the spectrometer was installed on May 19, 2011. By April 15, 2015, AMS-02 had recorded over 60 billion cosmic ray events and 90 billion after five years of operation since its installation in May 2011. In March 2013, Professor Ting reported initial results, saying that AMS had observed over 400,000 positrons, with the positron to electron fraction increa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Large Electron–Positron Collider
The Large Electron–Positron Collider (LEP) was one of the largest particle accelerators ever constructed. It was built at CERN, a multi-national centre for research in nuclear and particle physics near Geneva, Switzerland. LEP collided electrons with positrons at energies that reached 209 GeV. It was a circular collider with a circumference of 27 kilometres built in a tunnel roughly 100 m (300 ft) underground and passing through Switzerland and France. LEP was used from 1989 until 2000. Around 2001 it was dismantled to make way for the Large Hadron Collider, which re-used the LEP tunnel. To date, LEP is the most powerful accelerator of leptons ever built. Collider background LEP was a circular lepton collider – the most powerful such ever built. For context, modern colliders can be generally categorized based on their shape (circular or linear) and on what types of particles they accelerate and collide (leptons or hadrons). Leptons are point particles and are r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Teraelectronvolt
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. When used as a unit of energy, the numerical value of 1 eV in joules (symbol J) is equivalent to the numerical value of the charge of an electron in coulombs (symbol C). Under the 2019 redefinition of the SI base units, this sets 1 eV equal to the exact value Historically, the electronvolt was devised as a standard unit of measure through its usefulness in electrostatic particle accelerator sciences, because a particle with electric charge ''q'' gains an energy after passing through a voltage of ''V.'' Since ''q'' must be an integer multiple of the elementary charge ''e'' for any isolated particle, the gained energy in units of electronvolts conveniently equals that integer times the voltage. It is a common unit of energy within p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Laboratori Nazionali Del Gran Sasso
Laboratori Nazionali del Gran Sasso (LNGS) is the largest underground research center in the world. Situated below Gran Sasso mountain in Italy, it is well known for particle physics research by the INFN. In addition to a surface portion of the laboratory, there are extensive underground facilities beneath the mountain. The nearest towns are L'Aquila and Teramo. The facility is located about 120 km from Rome. The primary mission of the laboratory is to host experiments that require a low background environment in the fields of astroparticle physics and nuclear astrophysics and other disciplines that can profit of its characteristics and of its infrastructures. The LNGS is, like the three other European underground astroparticle laboratories (Laboratoire Souterrain de Modane, Laboratorio subterráneo de Canfranc, and Boulby Underground Laboratory), a member of the coordinating group ILIAS. Facilities The laboratory consists of a surface facility, located within the Gran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Accelerator Neutrino
An accelerator neutrino is a human-generated neutrino or antineutrino obtained using particle accelerators, in which beam of protons is accelerated and collided with a fixed target, producing mesons (mainly pions) which then decay into neutrinos. Depending on the energy of the accelerated protons and whether mesons decay in flight or at rest it is possible to generate neutrinos of a different flavour, energy and angular distribution. Accelerator neutrinos are used to study neutrino interactions and neutrino oscillations taking advantage of high intensity of neutrino beams, as well as a possibility to control and understand their type and kinematic properties to a much greater extent than for neutrinos from other sources. Muon neutrino beam production The process of the muon neutrino or muon antineutrino beam production consists of the following steps: * Acceleration of a primary proton beam in a particle accelerator. * Proton beam collision with a fixed target. In such a collis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutrino
A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small ('' -ino'') that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles excluding massless particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrinos muon neutrinos (), or tau neutrinos (), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CERN Neutrinos To Gran Sasso
The CERN Neutrinos to Gran Sasso (CNGS) project was a physics project of the European Organization for Nuclear Research (CERN). The aim of the project was to analyse the hypothesis of neutrino oscillation by directing a beam of neutrinos from CERN's facilities to the detector of the OPERA experiment at the Gran Sasso National Laboratory (LNGS), located in the Gran Sasso mountain in Italy. The CNGS facility was housed in a tunnel which diverged from one of the SPS–LHC transfer tunnels, at the Franco–Swiss border near Geneva. It used the Super Proton Synchrotron (SPS) accelerator as a source of high-energy protons. History Approval for the CNGS project was signed by the CERN Council in December 1999, with civil engineering on the project starting the following September. Construction of the tunnels and service caverns was completed in mid-2004, with equipment installation completed in summer 2005 and commissioning being carried out throughout spring 2006. The first proton beam w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simon Van Der Meer
Simon van der Meer (24 November 19254 March 2011) was a Dutch Accelerator physics, particle accelerator physicist who shared the Nobel Prize in Physics in 1984 with Carlo Rubbia for contributions to the CERN project which led to the discovery of the W and Z bosons, W and Z particles, the two fundamental communicators of the weak interaction. Biography One of four children, Simon van der Meer was born and grew up in The Hague, the Netherlands, in a family of teachers. He was educated at the city's Gymnasium (school), gymnasium, graduating in 1943 during the German occupation of the Netherlands. He studied Technical Physics at the Delft University of Technology, and received an engineer's degree in 1952. After working for Philips Natuurkundig Laboratorium, Philips Research in Eindhoven on high-voltage equipment for electron microscopy for a few years, he joined CERN in 1956 where he stayed until his retirement in 1990. Van der Meer was a relative of Nobel Prize winner Tjalling ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Carlo Rubbia
Carlo Rubbia (born 31 March 1934) is an Italian particle physicist and inventor who shared the Nobel Prize in Physics in 1984 with Simon van der Meer for work leading to the discovery of the W and Z particles at CERN. Early life and education Rubbia was born in 1934 in Gorizia, an Italian town on the border with Slovenia. His family moved to Venice then Udine because of wartime disruption. His father was an electrical engineer and encouraged him to study the same, though he stated his wish to study physics. In the local countryside, he collected and experimented with abandoned military communications equipment. After taking an entrance exam for the Scuola Normale Superiore di Pisa to study physics, he failed to get into the required top ten (coming eleventh), so began an engineering course in Milan in 1953. Soon after, a Pisa student dropped out, presenting Rubbia with his opportunity. He gained a degree and doctorate in a relatively short time with a thesis on cosmic ray experi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nobel Prize
The Nobel Prizes ( ; sv, Nobelpriset ; no, Nobelprisen ) are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfred Nobel was a Swedish chemist, engineer, and industrialist most famously known for the invention of dynamite. He died in 1896. In his will, he bequeathed all of his "remaining realisable assets" to be used to establish five prizes which became known as "Nobel Prizes." Nobel Prizes were first awarded in 1901. Nobel Prizes are awarded in the fields of Physics, Chemistry, Physiology or Medicine, Literature, and Peace (Nobel characterized the Peace Prize as "to the person who has done the most or best to advance fellowship among nations, the abolition or reduction of standing armies, and the establishment and promotion of peace congresses"). In 1968, Sveriges Riksbank (Sweden's central bank) funded the establishment of the Prize in Economi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stochastic Cooling
Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual charged particles generate in a feedback loop to reduce the tendency of individual particles to move away from the other particles in the beam. The technique was invented and applied at the Intersecting Storage Rings, and later the Super Proton Synchrotron (SPS), at CERN in Geneva, Switzerland, by Simon van der Meer, a physicist from the Netherlands. It was used to collect and cool antiprotons—these particles were injected into the Proton-Antiproton Collider, a modification of the SPS, with counter-rotating protons and collided at a particle physics experiment. For this work, van der Meer was awarded the Nobel Prize in Physics in 1984. He shared this prize with Carlo Rubbia of Italy, who proposed the Proton-Antiproton Collider. This exper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

W And Z Bosons
In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and . The  bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The  boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The  bosons have a magnetic moment, but the has none. All three of these particles are very short-lived, with a half-life of about . Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics. The  bosons are named after the ''weak'' force. The physicist Steven Weinberg named the additional particle the " particle", — The electroweak unification paper. and later gave the explanation that it was the last additional particle neede ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]