Antiproton Accumulator
   HOME
*



picture info

Antiproton Accumulator
The Antiproton Accumulator (AA) was an infrastructure connected to the Proton–Antiproton Collider (SpS) – a modification of the Super Proton Synchrotron (SPS) – at CERN. The AA was built in 1979 and 1980, for the production and accumulation of antiprotons. In the SpS the antiprotons were made to collide with protons, achieving collisions at a center of mass energy of app. 540 GeV (later raised to 630 GeV and finally, in a pulsed mode, to 900 GeV). Several experiments recorded data from the collisions, most notably the UA1 and UA2 experiment, where the W and Z bosons were discovered in 1983. The concept of the project was developed and promoted by C. Rubbia, for which he received the Nobel prize in 1984. He shared the prize with Simon van der Meer, whose invention of the method of stochastic cooling made large scale production of antiprotons possible for the first time. Operation Antiprotons were produced by directing an intense proton beam at a momentum of 26 GeV/ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Low Energy Antiproton Ring
The Low Energy Anti-Proton Ring (LEAR) was a particle accelerator at CERN which operated from 1982 until 1996. The ring was designed to decelerate and store antiprotons, to study the properties of antimatter and to create atoms of antihydrogen. Antiprotons for the ring were created by the CERN Proton Synchrotron via the Antiproton Collector and the Antiproton Accumulator. The creation of at least 9 atoms of antihydrogen were confirmed by the PS210 experiment in 1995. In 1996, LEAR was converted into the Low Energy Ion Ring, which has since been used in the lead ion injection process for the Large Hadron Collider. Low energy antiproton research continues at CERN using the Antiproton Decelerator The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiproto .... It was built as a successor f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Physics Facilities
In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic particles like atoms and molecules, to macroscopic particles like powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion. The term ''particle'' is rather general in meaning, and is refined as needed by various scientific fields. Anything that is composed of particles may be referred to as being particulate. However, the noun ''particulate'' is most frequently used to refer to pollutants in the Earth's atmosphere, which are a suspension of unconnected particles, rather than a connected particle aggregation. Conceptual properties The co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accelerator Physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: *Microwave engineering (for acceleration/deflection structures in the radio frequency range). *Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction). *Computer technology with an emphasis on digital signal processing; e.g., for automated manipulation of the particle beam. *Plasma physics, for the description of intense beams. The experiments conducted with particle accelerators are not regarded as part of accelerator physics, but belong (according to the objectives of the experiments) to, e.g., particle physics, nuclear physics, condensed matter physics or m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Particle Accelerators
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5  TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV. Other powerful accelerators are, RHIC at Brookhaven National Laboratory in New York and, formerly, the Tevatron at Fermilab, Batavia, Illinois. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion imp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CERN Accelerators
The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in a northwestern suburb of Geneva, on the France–Switzerland border. It comprises 23 member states, and Israel (admitted in 2013) is currently the only non-European country holding full membership. CERN is an official United Nations General Assembly observer. The acronym CERN is also used to refer to the laboratory; in 2019, it had 2,660 scientific, technical, and administrative staff members, and hosted about 12,400 users from institutions in more than 70 countries. In 2016, CERN generated 49 petabytes of data. CERN's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research — consequently, numerous experiments have been constructed at CERN through international collaborations. CERN is the site of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Super Proton–Antiproton Synchrotron
The Super Proton–Antiproton Synchrotron (or SpS, also known as the Proton–Antiproton Collider) was a particle accelerator that operated at CERN from 1981 to 1991. To operate as a proton-antiproton collider the Super Proton Synchrotron (SPS) underwent substantial modifications, altering it from a one beam synchrotron to a two-beam collider. The main experiments at the accelerator were UA1 and UA2, where the W and Z bosons were discovered in 1983. Carlo Rubbia and Simon van der Meer received the 1984 Nobel Prize in Physics for their contributions to the SpS-project, which led to the discovery of the W and Z bosons. Other experiments conducted at the SpS were UA4, UA5 and UA8. Background Around 1968 Sheldon Glashow, Steven Weinberg, and Abdus Salam came up with the electroweak theory, which unified electromagnetism and weak interactions, and for which they shared the 1979 Nobel Prize in Physics. The theory postulated the existence of W and Z bosons. It was experimentally es ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stochastic Cooling
Stochastic cooling is a form of particle beam cooling. It is used in some particle accelerators and storage rings to control the emittance of the particle beams in the machine. This process uses the electrical signals that the individual charged particles generate in a feedback loop to reduce the tendency of individual particles to move away from the other particles in the beam. The technique was invented and applied at the Intersecting Storage Rings, and later the Super Proton Synchrotron (SPS), at CERN in Geneva, Switzerland, by Simon van der Meer, a physicist from the Netherlands. It was used to collect and cool antiprotons—these particles were injected into the Proton-Antiproton Collider, a modification of the SPS, with counter-rotating protons and collided at a particle physics experiment. For this work, van der Meer was awarded the Nobel Prize in Physics in 1984. He shared this prize with Carlo Rubbia of Italy, who proposed the Proton-Antiproton Collider. This exper ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antiproton Decelerator
The Antiproton Decelerator (AD) is a storage ring at the CERN laboratory near Geneva. It was built from the Antiproton Collector (AC) to be a successor to the Low Energy Antiproton Ring (LEAR) and started operation in the year 2000. Antiprotons are created by impinging a proton beam from the Proton Synchrotron on a metal target. The AD decelerates the resultant antiprotons to an energy of 5.3 MeV, which are then ejected to one of several connected experiments. The major goals of experiments at AD are to spectroscopically observe the antihydrogen and to study the effects of gravity on antimatter. Though each experiment at AD has varied aims ranging from testing antimatter for cancer therapy to CPT symmetry and antigravity research. History From 1982 to 1996, CERN operated the Low Energy Antiproton Ring (LEAR), through which several experiments with slow-moving antiprotons were carried out. During the end stages of LEAR, the physics community involved in those antimatter ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Low Energy Ion Ring
The Low Energy Ion Ring (LEIR) is a particle accelerator at CERN used to accelerate ions from the LINAC 3 to the Proton Synchrotron (PS) to provide ions for collisions within the Large Hadron Collider (LHC). History LEIR was converted from a previous machine, the Low Energy Antiproton Ring (LEAR), a facility to decelerate and store antiprotons and to deliver them to experiments; the last LEAR antiproton run took place in 1996. LEIR was first proposed in 1993 but it wasn't until 2003 that work to transform the old experiment into the new accelerator was started. The upgrade took just over two years, being commissioned in October 2005 and tested for 4 months. In Autumn 2006 it was used to re-commission the PS to handle ions, and then again a year later it was used to re-commission the SPS. However, it wasn't until November 2010, five years later, that it successfully carried out its primary role to provide the lead ions to the LHC for its first ion collisions. During 2017, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase Space
In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually consists of all possible values of position and momentum variables. It is the outer product of direct space and reciprocal space. The concept of phase space was developed in the late 19th century by Ludwig Boltzmann, Henri Poincaré, and Josiah Willard Gibbs. Introduction In a phase space, every degree of freedom or parameter of the system is represented as an axis of a multidimensional space; a one-dimensional system is called a phase line, while a two-dimensional system is called a phase plane. For every possible state of the system or allowed combination of values of the system's parameters, a point is included in the multidimensional space. The system's evolving state over time traces a path (a phase-space trajectory for the system) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antiproton Collector
The Antiproton Collector (AC) was part of the antiparticle factory at CERN designed to decelerate and store antimatter, to study the properties of antimatter and to create atoms of antihydrogen. It was built in 1986 around the existing Antiproton Accumulator (AA) to improve the antiproton production by a factor of 10. Together, the Antiproton Collector and the Antiproton Accumulator formed the so-called Antiproton Accumulator Complex (AAC). Low energy antiproton research continues at CERN using the Antiproton Decelerator. It was built as a successor to LEAR and started operation in 2000. History After the Antiproton Accumulator (AA) had been operational since 1980, the update program ACOL (Antiproton COLlector) was proposed in 1983."CERN Scie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]