HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a
real-valued function In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real fun ...
is called convex if the
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
between any two points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the function) is a
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex r ...
. A twice-differentiable function of a single variable is convex
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
its second derivative is nonnegative on its entire domain. Well-known examples of convex functions of a single variable include the
quadratic function In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomial ...
x^2 and the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
e^x. In simple terms, a convex function refers to a function whose graph is shaped like a cup \cup, while a
concave function In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex. Definition A real-valued function f on an in ...
's graph is shaped like a cap \cap. Convex functions play an important role in many areas of mathematics. They are especially important in the study of
optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
problems where they are distinguished by a number of convenient properties. For instance, a strictly convex function on an open set has no more than one minimum. Even in infinite-dimensional spaces, under suitable additional hypotheses, convex functions continue to satisfy such properties and as a result, they are the most well-understood functionals in the
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
. In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
, a convex function applied to the
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a l ...
of a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
is always bounded above by the expected value of the convex function of the random variable. This result, known as
Jensen's inequality In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier pr ...
, can be used to deduce inequalities such as the arithmetic–geometric mean inequality and Hölder's inequality.


Definition

Let X be a
convex subset In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex ...
of a real
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
and let f: X \to \R be a function. Then f is called if and only if any of the following equivalent conditions hold:
  1. For all 0 \leq t \leq 1 and all x_1, x_2 \in X: f\left(t x_1 + (1-t) x_2\right) \leq t f\left(x_1\right) + (1-t) f\left(x_2\right) The right hand side represents the straight line between \left(x_1, f\left(x_1\right)\right) and \left(x_2, f\left(x_2\right)\right) in the graph of f as a function of t; increasing t from 0 to 1 or decreasing t from 1 to 0 sweeps this line. Similarly, the argument of the function f in the left hand side represents the straight line between x_1 and x_2 in X or the x-axis of the graph of f. So, this condition requires that the straight line between any pair of points on the curve of f to be above or just meets the graph.
  2. For all 0 < t < 1 and all x_1, x_2 \in X such that x_1 \neq x_2: f\left(t x_1 + (1-t) x_2\right) \leq t f\left(x_1\right) + (1-t) f\left(x_2\right) The difference of this second condition with respect to the first condition above is that this condition does not include the intersection points (for example, \left(x_1, f\left(x_1\right)\right) and \left(x_2, f\left(x_2\right)\right)) between the straight line passing through a pair of points on the curve of f (the straight line is represented by the right hand side of this condition) and the curve of f; the first condition includes the intersection points as it becomes f\left(x_1\right) \leq f\left(x_1\right) or f\left(x_2\right) \leq f\left(x_2\right) at t = 0 or 1, or x_1 = x_2. In fact, the intersection points do not need to be considered in a condition of convex using f\left(t x_1 + (1-t) x_2\right) \leq t f\left(x_1\right) + (1-t) f\left(x_2\right) because f\left(x_1\right) \leq f\left(x_1\right) and f\left(x_2\right) \leq f\left(x_2\right) are always true (so not useful to be a part of a condition).
The second statement characterizing convex functions that are valued in the real line \R is also the statement used to define that are valued in the
extended real number line In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra ...
\infty, \infty= \R \cup \, where such a function f is allowed to take \pm\infty as a value. The first statement is not used because it permits t to take 0 or 1 as a value, in which case, if f\left(x_1\right) = \pm\infty or f\left(x_2\right) = \pm\infty, respectively, then t f\left(x_1\right) + (1 - t) f\left(x_2\right) would be undefined (because the multiplications 0 \cdot \infty and 0 \cdot (-\infty) are undefined). The sum -\infty + \infty is also undefined so a convex extended real-valued function is typically only allowed to take exactly one of -\infty and +\infty as a value. The second statement can also be modified to get the definition of , where the latter is obtained by replacing \,\leq\, with the strict inequality \,<. Explicitly, the map f is called if and only if for all real 0 < t < 1 and all x_1, x_2 \in X such that x_1 \neq x_2: f\left(t x_1 + (1-t) x_2\right) < t f\left(x_1\right) + (1-t) f\left(x_2\right) A strictly convex function f is a function that the straight line between any pair of points on the curve f is above the curve f except for the intersection points between the straight line and the curve. The function f is said to be (resp. ) if -f (f multiplied by −1) is convex (resp. strictly convex).


Alternative naming

The term ''convex'' is often referred to as ''convex down'' or ''concave upward'', and the term
concave Concave or concavity may refer to: Science and technology * Concave lens * Concave mirror Mathematics * Concave function, the negative of a convex function * Concave polygon, a polygon which is not convex * Concave set * The concavity In ca ...
is often referred as ''concave down'' or ''convex upward''. If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph \cup. As an example,
Jensen's inequality In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier pr ...
refers to an inequality involving a convex or convex-(up), function.


Properties

Many properties of convex functions have the same simple formulation for functions of many variables as for functions of one variable. See below the properties for the case of many variables, as some of them are not listed for functions of one variable.


Functions of one variable

* Suppose f is a function of one
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
variable defined on an interval, and let R(x_1, x_2) = \frac (note that R(x_1, x_2) is the slope of the purple line in the above drawing; the function R is
symmetric Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definiti ...
in (x_1, x_2), means that R does not change by exchanging x_1 and x_2). f is convex if and only if R(x_1, x_2) is
monotonically non-decreasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
in x_1, for every fixed x_2 (or vice versa). This characterization of convexity is quite useful to prove the following results. * A convex function f of one real variable defined on some
open interval In mathematics, a (real) interval is a set of real numbers that contains all real numbers lying between any two numbers of the set. For example, the set of numbers satisfying is an interval which contains , , and all numbers in between. Other ...
C is
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
on C. f admits left and right derivatives, and these are
monotonically non-decreasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
. As a consequence, f is
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
at all but at most
countably many In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural number ...
points, the set on which f is not differentiable can however still be dense. If C is closed, then f may fail to be continuous at the endpoints of C (an example is shown in the examples section). * A
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
function of one variable is convex on an interval if and only if its
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. F ...
is
monotonically non-decreasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
on that interval. If a function is differentiable and convex then it is also
continuously differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
(due to
Darboux's theorem Darboux's theorem is a theorem in the mathematical field of differential geometry and more specifically differential forms, partially generalizing the Frobenius integration theorem. It is a foundational result in several fields, the chief among ...
). * A differentiable function of one variable is convex on an interval if and only if its graph lies above all of its
tangent In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
s: f(x) \geq f(y) + f'(y) (x-y) for all x and y in the interval. * A twice differentiable function of one variable is convex on an interval if and only if its
second derivative In calculus, the second derivative, or the second order derivative, of a function is the derivative of the derivative of . Roughly speaking, the second derivative measures how the rate of change of a quantity is itself changing; for example, ...
is non-negative there; this gives a practical test for convexity. Visually, a twice differentiable convex function "curves up", without any bends the other way (
inflection point In differential calculus and differential geometry, an inflection point, point of inflection, flex, or inflection (British English: inflexion) is a point on a smooth plane curve at which the curvature changes sign. In particular, in the case of ...
s). If its second derivative is positive at all points then the function is strictly convex, but the
converse Converse may refer to: Mathematics and logic * Converse (logic), the result of reversing the two parts of a definite or implicational statement ** Converse implication, the converse of a material implication ** Converse nonimplication, a logical c ...
does not hold. For example, the second derivative of f(x) = x^4 is f''(x) = 12x^, which is zero for x = 0, but x^4 is strictly convex. **This property and the above property in terms of "...its derivative is monotonically non-decreasing..." are not equal since if f'' is non-negative on an interval X then f' is monotonically non-decreasing on X while its converse is not true, for example, f' is monotonically non-decreasing on X while its derivative f'' is not defined at some points on X. * If f is a convex function of one real variable, and f(0)\le 0, then f is
superadditive In mathematics, a function f is superadditive if f(x+y) \geq f(x) + f(y) for all x and y in the domain of f. Similarly, a sequence \left\, n \geq 1, is called superadditive if it satisfies the inequality a_ \geq a_n + a_m for all m and n. The ter ...
on the
positive reals In mathematics, the set of positive real numbers, \R_ = \left\, is the subset of those real numbers that are greater than zero. The non-negative real numbers, \R_ = \left\, also include zero. Although the symbols \R_ and \R^ are ambiguously used fo ...
, that is f(a + b) \geq f(a) + f(b) for positive real numbers a and b. * A function is midpoint convex on an interval C if for all x_1, x_2 \in C f\left(\frac\right) \leq \frac. This condition is only slightly weaker than convexity. For example, a real-valued
Lebesgue measurable function In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in ...
that is midpoint-convex is convex: this is a theorem of Sierpinski. In particular, a continuous function that is midpoint convex will be convex.


Functions of several variables

* A function f : X \to \infty, \infty/math> valued in the
extended real number In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra ...
s \infty, \infty= \R \cup \ is convex if and only if its epigraph \ is a convex set. * A differentiable function f defined on a convex domain is convex if and only if f(x) \geq f(y) + \nabla f(y)^T \cdot (x-y) holds for all x, y in the domain. * A twice differentiable function of several variables is convex on a convex set if and only if its
Hessian matrix In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed ...
of second
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
s is positive semidefinite on the interior of the convex set. * For a convex function f, the
sublevel set In mathematics, a level set of a real-valued function of real variables is a set where the function takes on a given constant value , that is: : L_c(f) = \left\~, When the number of independent variables is two, a level set is calle ...
s \ and \ with a \in \R are convex sets. A function that satisfies this property is called a and may fail to be a convex function. * Consequently, the set of global minimisers of a convex function f is a convex set: \,f - convex. * Any
local minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
of a convex function is also a
global minimum In mathematical analysis, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as extrema (the plural of extremum), are the largest and smallest value of the function, either within a given ran ...
. A convex function will have at most one global minimum. *
Jensen's inequality In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier pr ...
applies to every convex function f. If X is a random variable taking values in the domain of f, then \operatorname(f(X)) \geq f(\operatorname(X)), where \operatorname denotes the
mathematical expectation In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
. Indeed, convex functions are exactly those that satisfies the hypothesis of
Jensen's inequality In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier pr ...
. * A first-order
homogeneous function In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the ''deg ...
of two positive variables x and y, (that is, a function satisfying f(a x, a y) = a f(x, y) for all positive real a, x, y > 0) that is convex in one variable must be convex in the other variable.


Operations that preserve convexity

* -f is concave if and only if f is convex. * If r is any real number then r + f is convex if and only if f is convex. * Nonnegative weighted sums: **if w_1, \ldots, w_n \geq 0 and f_1, \ldots, f_n are all convex, then so is w_1 f_1 + \cdots + w_n f_n. In particular, the sum of two convex functions is convex. **this property extends to infinite sums, integrals and expected values as well (provided that they exist). * Elementwise maximum: let \_ be a collection of convex functions. Then g(x) = \sup\nolimits_ f_i(x) is convex. The domain of g(x) is the collection of points where the expression is finite. Important special cases: **If f_1, \ldots, f_n are convex functions then so is g(x) = \max \left\. **
Danskin's theorem In convex analysis, Danskin's theorem is a theorem which provides information about the derivatives of a function of the form f(x) = \max_ \phi(x,z). The theorem has applications in optimization, where it sometimes is used to solve minimax problem ...
: If f(x,y) is convex in x then g(x) = \sup\nolimits_ f(x,y) is convex in x even if C is not a convex set. * Composition: **If f and g are convex functions and g is non-decreasing over a univariate domain, then h(x) = g(f(x)) is convex. For example, if f is convex, then so is e^ because e^x is convex and monotonically increasing. **If f is concave and g is convex and non-increasing over a univariate domain, then h(x) = g(f(x)) is convex. **Convexity is invariant under affine maps: that is, if f is convex with domain D_f \subseteq \mathbf^m, then so is g(x) = f(Ax+b), where A \in \mathbf^, b \in \mathbf^m with domain D_g \subseteq \mathbf^n. * Minimization: If f(x,y) is convex in (x,y) then g(x) = \inf\nolimits_ f(x,y) is convex in x, provided that C is a convex set and that g(x) \neq -\infty. * If f is convex, then its perspective g(x, t) = t f \left(\tfrac \right) with domain \left\ is convex. * Let X be a vector space. f : X \to \mathbf is convex and satisfies f(0) \leq 0 if and only if f(ax+by) \leq a f(x) + bf(y) for any x, y \in X and any non-negative real numbers a, b that satisfy a + b \leq 1.


Strongly convex functions

The concept of strong convexity extends and parametrizes the notion of strict convexity. A strongly convex function is also strictly convex, but not vice versa. A differentiable function f is called strongly convex with parameter m > 0 if the following inequality holds for all points x, y in its domain: (\nabla f(x) - \nabla f(y) )^T (x-y) \ge m \, x-y\, _2^2 or, more generally, \langle \nabla f(x) - \nabla f(y), x-y \rangle \ge m \, x-y\, ^2 where \langle \cdot, \cdot\rangle is any
inner product In mathematics, an inner product space (or, rarely, a Hausdorff space, Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation (mathematics), operation called an inner product. The inner product of two ve ...
, and \, \cdot\, is the corresponding
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envir ...
. Some authors, such as refer to functions satisfying this inequality as
elliptic In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in ...
functions. An equivalent condition is the following: f(y) \ge f(x) + \nabla f(x)^T (y-x) + \frac \, y-x\, _2^2 It is not necessary for a function to be differentiable in order to be strongly convex. A third definition for a strongly convex function, with parameter m, is that, for all x, y in the domain and t \in ,1 f(tx+(1-t)y) \le t f(x)+(1-t)f(y) - \frac m t(1-t) \, x-y\, _2^2 Notice that this definition approaches the definition for strict convexity as m \to 0, and is identical to the definition of a convex function when m = 0. Despite this, functions exist that are strictly convex but are not strongly convex for any m > 0 (see example below). If the function f is twice continuously differentiable, then it is strongly convex with parameter m if and only if \nabla^2 f(x) \succeq mI for all x in the domain, where I is the identity and \nabla^2f is the
Hessian matrix In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed ...
, and the inequality \succeq means that \nabla^2 f(x) - mI is positive semi-definite. This is equivalent to requiring that the minimum
eigenvalue In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted b ...
of \nabla^2 f(x) be at least m for all x. If the domain is just the real line, then \nabla^2 f(x) is just the second derivative f''(x), so the condition becomes f''(x) \ge m. If m = 0 then this means the Hessian is positive semidefinite (or if the domain is the real line, it means that f''(x) \ge 0), which implies the function is convex, and perhaps strictly convex, but not strongly convex. Assuming still that the function is twice continuously differentiable, one can show that the lower bound of \nabla^2 f(x) implies that it is strongly convex. Using
Taylor's Theorem In calculus, Taylor's theorem gives an approximation of a ''k''-times differentiable function around a given point by a polynomial of degree ''k'', called the ''k''th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the t ...
there exists z \in \ such that f(y) = f(x) + \nabla f(x)^T (y-x) + \frac (y-x)^T \nabla^2f(z) (y-x) Then (y-x)^T \nabla^2f(z) (y-x) \ge m (y-x)^T(y-x) by the assumption about the eigenvalues, and hence we recover the second strong convexity equation above. A function f is strongly convex with parameter ''m'' if and only if the function x\mapsto f(x) -\frac m 2 \, x\, ^2 is convex. The distinction between convex, strictly convex, and strongly convex can be subtle at first glance. If f is twice continuously differentiable and the domain is the real line, then we can characterize it as follows: *f convex if and only if f''(x) \ge 0 for all x. *f strictly convex if f''(x) > 0 for all x (note: this is sufficient, but not necessary). *f strongly convex if and only if f''(x) \ge m > 0 for all x. For example, let f be strictly convex, and suppose there is a sequence of points (x_n) such that f''(x_n) = \tfrac. Even though f''(x_n) > 0, the function is not strongly convex because f''(x) will become arbitrarily small. A twice continuously differentiable function f on a compact domain X that satisfies f''(x)>0 for all x\in X is strongly convex. The proof of this statement follows from the
extreme value theorem In calculus, the extreme value theorem states that if a real-valued function f is continuous on the closed interval ,b/math>, then f must attain a maximum and a minimum, each at least once. That is, there exist numbers c and d in ,b/math> suc ...
, which states that a continuous function on a compact set has a maximum and minimum. Strongly convex functions are in general easier to work with than convex or strictly convex functions, since they are a smaller class. Like strictly convex functions, strongly convex functions have unique minima on compact sets.


Uniformly convex functions

A uniformly convex function, with modulus \phi, is a function f that, for all x, y in the domain and t \in
, 1 The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline (t ...
satisfies f(tx+(1-t)y) \le t f(x)+(1-t)f(y) - t(1-t) \phi(\, x-y\, ) where \phi is a function that is non-negative and vanishes only at 0. This is a generalization of the concept of strongly convex function; by taking \phi(\alpha) = \tfrac \alpha^2 we recover the definition of strong convexity. It is worth noting that some authors require the modulus \phi to be an increasing function, but this condition is not required by all authors.


Examples


Functions of one variable

* The function f(x)=x^2 has f''(x)=2>0, so is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. * The function f(x)=x^4 has f''(x)=12x^2\ge 0, so is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points. It is not strongly convex. * The
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
function f(x)=, x, is convex (as reflected in the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
), even though it does not have a derivative at the point x = 0. It is not strictly convex. * The function f(x)=, x, ^p for p \ge 1 is convex. * The
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
f(x)=e^x is convex. It is also strictly convex, since f''(x)=e^x >0 , but it is not strongly convex since the second derivative can be arbitrarily close to zero. More generally, the function g(x) = e^ is logarithmically convex if f is a convex function. The term "superconvex" is sometimes used instead. * The function f with domain ,1defined by f(0) = f(1) = 1, f(x) = 0 for 0 < x < 1 is convex; it is continuous on the open interval (0, 1), but not continuous at 0 and 1. * The function x^3 has second derivative 6 x; thus it is convex on the set where x \geq 0 and
concave Concave or concavity may refer to: Science and technology * Concave lens * Concave mirror Mathematics * Concave function, the negative of a convex function * Concave polygon, a polygon which is not convex * Concave set * The concavity In ca ...
on the set where x \leq 0. * Examples of functions that are
monotonically increasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
but not convex include f(x)=\sqrt and g(x)=\log x. * Examples of functions that are convex but not
monotonically increasing In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
include h(x)= x^2 and k(x)=-x. * The function f(x) = \tfrac has f''(x)=\tfrac which is greater than 0 if x > 0 so f(x) is convex on the interval (0, \infty). It is concave on the interval (-\infty, 0). * The function f(x)=\tfrac with f(0)=\infty, is convex on the interval (0, \infty) and convex on the interval (-\infty, 0), but not convex on the interval (-\infty, \infty), because of the singularity at x = 0.


Functions of ''n'' variables

*
LogSumExp The LogSumExp (LSE) (also called RealSoftMax or multivariable softplus) function is a smooth maximum – a smooth approximation to the maximum function, mainly used by machine learning algorithms. It is defined as the logarithm of the sum of t ...
function, also called softmax function, is a convex function. *The function -\log\det(X) on the domain of
positive-definite matrices In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a c ...
is convex. * Every real-valued
linear transformation In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
is convex but not strictly convex, since if f is linear, then f(a + b) = f(a) + f(b). This statement also holds if we replace "convex" by "concave". * Every real-valued
affine function In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
, that is, each function of the form f(x) = a^T x + b, is simultaneously convex and concave. * Every
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envir ...
is a convex function, by the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
and
positive homogeneity In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the ''d ...
. * The
spectral radius In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectru ...
of a
nonnegative matrix In mathematics, a nonnegative matrix, written : \mathbf \geq 0, is a matrix in which all the elements are equal to or greater than zero, that is, : x_ \geq 0\qquad \forall . A positive matrix is a matrix in which all the elements are strictly gre ...
is a convex function of its diagonal elements.Cohen, J.E., 1981
Convexity of the dominant eigenvalue of an essentially nonnegative matrix
Proceedings of the American Mathematical Society, 81(4), pp.657-658.


See also

*
Concave function In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex. Definition A real-valued function f on an in ...
*
Convex analysis Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory. Convex sets A subset C \subseteq X of s ...
*
Convex conjugate In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation ...
*
Convex curve In geometry, a convex curve is a plane curve that has a supporting line through each of its points. There are many other equivalent definitions of these curves, going back to Archimedes. Examples of convex curves include the convex polygons, th ...
*
Convex optimization Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization probl ...
*
Geodesic convexity In mathematics — specifically, in Riemannian geometry — geodesic convexity is a natural generalization of convexity for sets and functions to Riemannian manifolds. It is common to drop the prefix "geodesic" and refer simply to "convexi ...
*
Hahn–Banach theorem The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear f ...
*
Hermite–Hadamard inequality In mathematics, the Hermite–Hadamard inequality, named after Charles Hermite and Jacques Hadamard and sometimes also called Hadamard's inequality, states that if a function ƒ :  'a'', ''b''nbsp;→ R is convex function, c ...
* Invex function *
Jensen's inequality In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier pr ...
*
K-convex function ''K''-convex functions, first introduced by Scarf, are a special weakening of the concept of convex function which is crucial in the proof of the optimality Optimality may refer to: * Mathematical optimization * Optimality Theory in linguistics ...
*
Kachurovskii's theorem In mathematics, Kachurovskii's theorem is a theorem relating the convexity of a function on a Banach space to the monotonicity of its Fréchet derivative. Statement of the theorem Let ''K'' be a convex subset of a Banach space ''V'' and let ''f'' ...
, which relates convexity to
monotonicity In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of orde ...
of the derivative * Karamata's inequality * Logarithmically convex function *
Pseudoconvex function In convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a di ...
*
Quasiconvex function In mathematics, a quasiconvex function is a real-valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form (-\infty,a) is a convex set. For a function of a single v ...
*
Subderivative In mathematics, the subderivative, subgradient, and subdifferential generalize the derivative to convex functions which are not necessarily differentiable. Subderivatives arise in convex analysis, the study of convex functions, often in connection ...
of a convex function


Notes


References

* * Borwein, Jonathan, and Lewis, Adrian. (2000). Convex Analysis and Nonlinear Optimization. Springer. * * Hiriart-Urruty, Jean-Baptiste, and Lemaréchal, Claude. (2004). Fundamentals of Convex analysis. Berlin: Springer. * * * * * * *


External links

* * {{Authority control Convex analysis Generalized convexity Types of functions