In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Stolarsky mean is a generalization of the
logarithmic mean
In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient.
This calculation is applicable in engineering problems involving heat and mass trans ...
. It was introduced by
Kenneth B. Stolarsky in 1975.
Definition
For two positive
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s ''x'', ''y'' the Stolarsky Mean is defined as:
:
Derivation
It is derived from the
mean value theorem
In mathematics, the mean value theorem (or Lagrange theorem) states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It i ...
, which states that a
secant line
Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to:
* a secant line, in geometry
* the secant variety, in algebraic geometry
* secant (trigonometry) (Latin: secans), the multiplicative inverse (or reciproc ...
, cutting the graph of a
differentiable
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
function
at
and
, has the same
slope
In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
as a line
tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
to the graph at some point
in the
interval