Signal Pathway
   HOME

TheInfoList



OR:

Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly
protein phosphorylation Protein phosphorylation is a reversible post-translational modification of proteins in which an amino acid residue is phosphorylated by a protein kinase by the addition of a covalently bound phosphate group. Phosphorylation alters the structural ...
catalyzed by
protein kinases A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
, which ultimately results in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding (or signal sensing) in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway. When signaling pathways interact with one another they form networks, which allow cellular responses to be coordinated, often by combinatorial signaling events. At the molecular level, such responses include changes in the
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
or translation of genes, and post-translational and conformational changes in proteins, as well as changes in their location. These molecular events are the basic mechanisms controlling
cell growth Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than ...
, proliferation, metabolism and many other processes. In multicellular organisms, signal transduction pathways regulate
cell communication In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a Cell (biology), cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property ...
in a wide variety of ways. Each component (or node) of a signaling pathway is classified according to the role it plays with respect to the initial stimulus.
Ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
are termed ''first messengers'', while receptors are the ''signal transducers'', which then activate ''primary effectors''. Such effectors are typically proteins and are often linked to
second messenger Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or cell signaling, encompassing both first me ...
s, which can activate ''secondary effectors'', and so on. Depending on the efficiency of the nodes, a signal can be amplified (a concept known as signal gain), so that one signaling molecule can generate a response involving hundreds to millions of molecules. As with other signals, the transduction of biological signals is characterised by delay, noise, signal feedback and feedforward and interference, which can range from negligible to pathological. With the advent of
computational biology Computational biology refers to the use of data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and big data, the field also has fo ...
, the analysis of signaling pathways and networks has become an essential tool to understand cellular functions and disease, including signaling rewiring mechanisms underlying responses to acquired drug resistance.


Stimuli

The basis for signal transduction is the transformation of a certain stimulus into a biochemical signal. The nature of such stimuli can vary widely, ranging from extracellular cues, such as the presence of
EGF EGF may refer to: * E.G.F., a Gabonese company * East Grand Forks, Minnesota, a city * East Garforth railway station in England * Epidermal growth factor * Equity Group Foundation, a Kenyan charity * European Gendarmerie Force, a military unit of ...
, to intracellular events, such as the DNA damage resulting from replicative telomere attrition. Traditionally, signals that reach the central nervous system are classified as senses. These are transmitted from neuron to neuron in a process called
synaptic transmission Neurotransmission (Latin: ''transmissio'' "passage, crossing" from ''transmittere'' "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), ...
. Many other intercellular signal relay mechanisms exist in multicellular organisms, such as those that govern embryonic development.


Ligands

The majority of signal transduction pathways involve the binding of signaling molecules, known as ligands, to receptors that trigger events inside the cell. The binding of a signaling molecule with a receptor causes a change in the conformation of the receptor, known as ''receptor activation''. Most ligands are soluble molecules from the extracellular medium which bind to
cell surface receptors Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral me ...
. These include growth factors,
cytokines Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrin ...
and neurotransmitters. Components of the extracellular matrix such as fibronectin and
hyaluronan Hyaluronic acid (; abbreviated HA; conjugate base hyaluronate), also called hyaluronan, is an anionic, nonsulfated glycosaminoglycan distributed widely throughout connective, epithelial, and neural tissues. It is unique among glycosaminoglycans ...
can also bind to such receptors ( integrins and CD44, respectively). In addition, some molecules such as steroid hormones are lipid-soluble and thus cross the plasma membrane to reach cytoplasmic or
nuclear receptors In the field of molecular biology, nuclear receptors are a class of proteins responsible for sensing steroids, thyroid hormones, vitamins, and certain other molecules. These receptors work with other proteins to regulate the expression of specif ...
. In the case of steroid hormone receptors, their stimulation leads to binding to the promoter region of steroid-responsive genes. Not all classifications of signaling molecules take into account the molecular nature of each class member. For example, odorants belong to a wide range of molecular classes, as do neurotransmitters, which range in size from small molecules such as
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic compound, organic chemical of the catecholamine and phenethylamine families. Dopamine const ...
to neuropeptides such as
endorphins Endorphins (contracted from endogenous morphine) are chemical signals in the brain that block the perception of pain and increase feelings of wellbeing. They are produced and stored in an area of the brain known as the pituitary gland. Hist ...
. Moreover, some molecules may fit into more than one class, e.g.
epinephrine Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands and ...
is a neurotransmitter when secreted by the central nervous system and a hormone when secreted by the
adrenal medulla The adrenal medulla ( la, medulla glandulae suprarenalis) is part of the adrenal gland. It is located at the center of the gland, being surrounded by the adrenal cortex. It is the innermost part of the adrenal gland, consisting of chromaffin cel ...
. Some receptors such as HER2 are capable of ligand-independent activation when overexpressed or mutated. This leads to constituitive activation of the pathway, which may or may not be overturned by compensation mechanisms. In the case of HER2, which acts as a dimerization partner of other EGFRs, constituitive activation leads to hyperproliferation and cancer.


Mechanical forces

The prevalence of
basement membranes The basement membrane is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tissues including mesothelium and ...
in the tissues of
Eumetazoa Eumetazoa (), also known as diploblasts, Epitheliozoa, or Histozoa, are a proposed basal animal clade as a sister group of the Porifera (sponges). The basal eumetazoan clades are the Ctenophora and the ParaHoxozoa. Placozoa is now also seen as a ...
ns means that most cell types require
attachment Attachment may refer to: Entertainment * ''Attachments'' (novel), a 2011 novel by Rainbow Rowell * ''Attachments'' (TV series), a BBC comedy-drama that ran from 2000 to 2002 Law * Attachment (law), a means of collecting a legal judgment by lev ...
to survive. This requirement has led to the development of complex mechanotransduction pathways, allowing cells to sense the stiffness of the substratum. Such signaling is mainly orchestrated in focal adhesions, regions where the integrin-bound actin cytoskeleton detects changes and transmits them downstream through YAP1. Calcium-dependent cell adhesion molecules such as
cadherin Cadherins (named for "calcium-dependent adhesion") are a type of cell adhesion molecule (CAM) that is important in the formation of adherens junctions to allow cells to adhere to each other . Cadherins are a class of type-1 transmembrane proteins, ...
s and selectins can also mediate mechanotransduction. Specialised forms of mechanotransduction within the nervous system are responsible for mechanosensation: hearing, touch, proprioception and balance.


Osmolarity

Cellular and systemic control of
osmotic pressure Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure ...
(the difference in osmolarity between the cytosol and the extracellular medium) is critical for homeostasis. There are three ways in which cells can detect osmotic stimuli: as changes in macromolecular crowding, ionic strength, and changes in the properties of the plasma membrane or cytoskeleton (the latter being a form of mechanotransduction). These changes are detected by proteins known as osmosensors or osmoreceptors. In humans, the best characterised osmosensors are transient receptor potential channels present in the primary cilium of human cells. In yeast, the HOG pathway has been extensively characterised.


Temperature

The sensing of temperature in cells is known as thermoception and is primarily mediated by transient receptor potential channels. Additionally, animal cells contain a conserved mechanism to prevent high temperatures from causing cellular damage, the
heat-shock response The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. In a normal ...
. Such response is triggered when high temperatures cause the dissociation of inactive
HSF1 Heat shock factor 1 (HSF1) is a protein that in humans is encoded by the ''HSF1'' gene. HSF1 is highly conserved in eukaryotes and is the primary mediator of transcriptional responses to proteotoxic stress with important roles in non-stress regul ...
from complexes with heat shock proteins
Hsp40 In molecular biology, chaperone DnaJ, also known as Hsp40 (heat shock protein 40 kD), is a molecular chaperone protein. It is expressed in a wide variety of organisms from bacteria to humans. Function Molecular chaperones are a diverse family o ...
/ Hsp70 and Hsp90. With help from the
ncRNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-c ...
''hsr1'', HSF1 then trimerizes, becoming active and upregulating the expression of its target genes. Many other thermosensory mechanisms exist in both
prokaryotes A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
and
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
.


Light

In mammals, light controls the sense of sight and the
circadian clock A circadian clock, or circadian oscillator, is a biochemical oscillator that cycles with a stable phase (waves), phase and is synchronized with solar time. Such a clock's ''in vivo'' period is necessarily almost exactly 24 hours (the earth's curre ...
by activating light-sensitive proteins in
photoreceptor cell A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light (visible electromagnetic radiatio ...
s in the
eye Eyes are organs of the visual system. They provide living organisms with vision, the ability to receive and process visual detail, as well as enabling several photo response functions that are independent of vision. Eyes detect light and conv ...
's retina. In the case of vision, light is detected by
rhodopsin Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene and a G-protein-coupled receptor (GPCR). It is the opsin of the rod cells in the retina and a light-sensitive receptor protein that triggers visual phototransduction ...
in
rod Rod, Ror, Ród, Rőd, Rød, Röd, ROD, or R.O.D. may refer to: Devices * Birch rod, made out of twigs from birch or other trees for corporal punishment * Ceremonial rod, used to indicate a position of authority * Connecting rod, main, coupling, ...
and
cone cells Cone cells, or cones, are photoreceptor cells in the retinas of vertebrate eyes including the human eye. They respond differently to light of different wavelengths, and the combination of their responses is responsible for color vision. Cones ...
. In the case of the circadian clock, a different photopigment,
melanopsin Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene ''Opn4''. In the mammalian retina, there are two additional categories of opsins, both involved in the for ...
, is responsible for detecting light in intrinsically photosensitive retinal ganglion cells.


Receptors

Receptors can be roughly divided into two major classes: intracellular and extracellular receptors.


Extracellular receptors

Extracellular receptors are integral transmembrane proteins and make up most receptors. They span the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
of the cell, with one part of the receptor on the outside of the cell and the other on the inside. Signal transduction occurs as a result of a ligand binding to the outside region of the receptor (the ligand does not pass through the membrane). Ligand-receptor binding induces a change in the conformation of the inside part of the receptor, a process sometimes called "receptor activation". This results in either the activation of an enzyme domain of the receptor or the exposure of a binding site for other intracellular signaling proteins within the cell, eventually propagating the signal through the cytoplasm. In eukaryotic cells, most intracellular proteins activated by a ligand/receptor interaction possess an enzymatic activity; examples include tyrosine kinase and
phosphatase In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid Ester, monoester into a phosphate ion and an Alcohol (chemistry), alcohol. Because a phosphatase enzyme catalysis, catalyzes the hydrolysis of its Substrate ...
s. Often such enzymes are covalently linked to the receptor. Some of them create
second messenger Second messengers are intracellular signaling molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or cell signaling, encompassing both first me ...
s such as cyclic AMP and IP3, the latter controlling the release of intracellular calcium stores into the cytoplasm. Other activated proteins interact with adaptor proteins that facilitate signaling protein interactions and coordination of signaling complexes necessary to respond to a particular stimulus. Enzymes and adaptor proteins are both responsive to various second messenger molecules. Many adaptor proteins and enzymes activated as part of signal transduction possess specialized
protein domains In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of s ...
that bind to specific secondary messenger molecules. For example, calcium ions bind to the EF hand domains of
calmodulin Calmodulin (CaM) (an abbreviation for calcium-modulated protein) is a multifunctional intermediate calcium-binding messenger protein expressed in all eukaryotic cells. It is an intracellular target of the secondary messenger Ca2+, and the bind ...
, allowing it to bind and activate
calmodulin-dependent kinase CAMK, also written as CaMK or CCaMK, is an abbreviation for the Ca2+/calmodulin-dependent protein kinase class of enzymes. CAMKs are activated by increases in the concentration of intracellular calcium ions (Ca2+) and calmodulin. When activated, t ...
. PIP3 and other phosphoinositides do the same thing to the Pleckstrin homology domains of proteins such as the kinase protein AKT.


G protein–coupled receptors

G protein–coupled receptors (GPCRs) are a family of integral transmembrane proteins that possess seven transmembrane domains and are linked to a heterotrimeric G protein. With nearly 800 members, this is the largest family of membrane proteins and receptors in mammals. Counting all animal species, they add up to over 5000. Mammalian GPCRs are classified into 5 major families: rhodopsin-like, secretin-like, metabotropic glutamate, adhesion and frizzled/ smoothened, with a few GPCR groups being difficult to classify due to low sequence similarity, e.g.
vomeronasal receptor Vomeronasal receptors are a class of olfactory receptors that putatively function as receptors for pheromones. Pheromones have evolved in all animal phyla, to signal sex and dominance status, and are responsible for stereotypical social and sexua ...
s. Other classes exist in eukaryotes, such as the '' Dictyostelium''
cyclic AMP receptors Cyclic AMP receptors from slime molds are a distinct family of G-protein coupled receptors. These receptors control development in Dictyostelium discoideum. In ''D. discoideum'', the cyclic AMP Cyclic adenosine monophosphate (cAMP, cyclic A ...
and
fungal mating pheromone receptors Fungal pheromone mating factor receptors form a distinct family of G-protein-coupled receptors. Function Mating factor receptorSTE2anSTE3are integral membrane proteins that may be involved in the response to mating factors on the cell membran ...
. Signal transduction by a GPCR begins with an inactive G protein coupled to the receptor; the G protein exists as a heterotrimer consisting of Gα, Gβ, and Gγ subunits. Once the GPCR recognizes a ligand, the conformation of the receptor changes to activate the G protein, causing Gα to bind a molecule of GTP and dissociate from the other two G-protein subunits. The dissociation exposes sites on the subunits that can interact with other molecules. The activated G protein subunits detach from the receptor and initiate signaling from many downstream effector proteins such as phospholipases and
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of io ...
, the latter permitting the release of second messenger molecules. The total strength of signal amplification by a GPCR is determined by the lifetimes of the ligand-receptor complex and receptor-effector protein complex and the deactivation time of the activated receptor and effectors through intrinsic enzymatic activity; e.g. via protein kinase phosphorylation or b-arrestin-dependent internalization. A study was conducted where a point mutation was inserted into the gene encoding the chemokine receptor CXCR2; mutated cells underwent a malignant transformation due to the expression of CXCR2 in an active conformation despite the absence of chemokine-binding. This meant that chemokine receptors can contribute to cancer development.


Tyrosine, Ser/Thr and Histidine-specific protein kinases

Receptor tyrosine kinases (RTKs) are transmembrane proteins with an intracellular
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
domain and an extracellular domain that binds ligands; examples include growth factor receptors such as the insulin receptor. To perform signal transduction, RTKs need to form
dimer Dimer may refer to: * Dimer (chemistry), a chemical structure formed from two similar sub-units ** Protein dimer, a protein quaternary structure ** d-dimer * Dimer model, an item in statistical mechanics, based on ''domino tiling'' * Julius Dimer ( ...
s in the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
; the dimer is stabilized by ligands binding to the receptor. The interaction between the cytoplasmic domains stimulates the auto
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
of tyrosine residues within the intracellular kinase domains of the RTKs, causing conformational changes. Subsequent to this, the receptors' kinase domains are activated, initiating
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
signaling cascades of downstream cytoplasmic molecules that facilitate various cellular processes such as
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellula ...
and metabolism. Many Ser/Thr and dual-specificity
protein kinases A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
are important for signal transduction, either acting downstream of eceptor tyrosine kinases or as membrane-embedded or cell-soluble versions in their own right. The process of signal transduction involves around 560 known
protein kinases A protein kinase is a kinase which selectively modifies other proteins by covalently adding phosphates to them (phosphorylation) as opposed to kinases which modify lipids, carbohydrates, or other molecules. Phosphorylation usually results in a fun ...
and pseudokinases, encoded by the human kinome As is the case with GPCRs, proteins that bind GTP play a major role in signal transduction from the activated RTK into the cell. In this case, the G proteins are members of the
Ras Ras or RAS may refer to: Arts and media * RAS Records Real Authentic Sound, a reggae record label * Rundfunk Anstalt Südtirol, a south Tyrolese public broadcasting service * Rás 1, an Icelandic radio station * Rás 2, an Icelandic radio stati ...
,
Rho Rho (uppercase Ρ, lowercase ρ or ; el, ρο or el, ρω, label=none) is the 17th letter of the Greek alphabet. In the system of Greek numerals it has a value of 100. It is derived from Phoenician letter res . Its uppercase form uses the sa ...
, and Raf families, referred to collectively as
small G protein Small GTPases (), also known as small G-proteins, are a family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP). They are a type of G-protein found in the cytosol that are homologous to the alpha subunit of heterotr ...
s. They act as molecular switches usually tethered to membranes by
isoprenyl Isoprene, or 2-methyl-1,3-butadiene, is a common volatile organic compound with the formula CH2=C(CH3)−CH=CH2. In its pure form it is a colorless volatile liquid. Isoprene is an unsaturated hydrocarbon. It is produced by many plants and animals ...
groups linked to their carboxyl ends. Upon activation, they assign proteins to specific membrane subdomains where they participate in signaling. Activated RTKs in turn activate small G proteins that activate guanine nucleotide exchange factors such as SOS1. Once activated, these exchange factors can activate more small G proteins, thus amplifying the receptor's initial signal. The mutation of certain RTK genes, as with that of GPCRs, can result in the expression of receptors that exist in a constitutively activated state; such mutated genes may act as oncogenes. Histidine-specific protein kinases are structurally distinct from other protein kinases and are found in prokaryotes, fungi, and plants as part of a two-component signal transduction mechanism: a phosphate group from ATP is first added to a histidine residue within the kinase, then transferred to an aspartate residue on a receiver domain on a different protein or the kinase itself, thus activating the aspartate residue.


Integrins

Integrins are produced by a wide variety of cells; they play a role in cell attachment to other cells and the extracellular matrix and in the transduction of signals from extracellular matrix components such as fibronectin and
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
. Ligand binding to the extracellular domain of integrins changes the protein's conformation, clustering it at the cell membrane to initiate signal transduction. Integrins lack kinase activity; hence, integrin-mediated signal transduction is achieved through a variety of intracellular protein kinases and adaptor molecules, the main coordinator being integrin-linked kinase. As shown in the adjacent picture, cooperative integrin-RTK signaling determines the timing of cellular survival,
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
,
proliferation Proliferation may refer to: Weapons *Nuclear proliferation, the spread of nuclear weapons, material, and technology *Chemical weapon proliferation, the spread of chemical weapons, material, and technology * Small arms proliferation, the spread of ...
, and differentiation. Important differences exist between integrin-signaling in circulating blood cells and non-circulating cells such as
epithelial cell Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellula ...
s; integrins of circulating cells are normally inactive. For example, cell membrane integrins on circulating leukocytes are maintained in an inactive state to avoid epithelial cell attachment; they are activated only in response to stimuli such as those received at the site of an inflammatory response. In a similar manner, integrins at the cell membrane of circulating
platelets Platelets, also called thrombocytes (from Greek θρόμβος, "clot" and κύτος, "cell"), are a component of blood whose function (along with the coagulation factors) is to react to bleeding from blood vessel injury by clumping, thereby ini ...
are normally kept inactive to avoid thrombosis. Epithelial cells (which are non-circulating) normally have active integrins at their cell membrane, helping maintain their stable adhesion to underlying stromal cells that provide signals to maintain normal functioning. In plants, there are no bona fide integrin receptors identified to date; nevertheless, several integrin-like proteins were proposed based on structural homology with the metazoan receptors. Plants contain integrin-linked kinases that are very similar in their primary structure with the animal ILKs. In the experimental model plant ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter a ...
'', one of the integrin-linked kinase genes, ''ILK1'', has been shown to be a critical element in the plant immune response to signal molecules from bacterial pathogens and plant sensitivity to salt and osmotic stress. ILK1 protein interacts with the high-affinity potassium transporter HAK5 and with the calcium sensor CML9.


Toll-like receptors

When activated, toll-like receptors (TLRs) take adapter molecules within the cytoplasm of cells in order to propagate a signal. Four adaptor molecules are known to be involved in signaling, which are Myd88, TIRAP,
TRIF TIR-domain-containing adapter-inducing interferon-β (TRIF) is an adapter in responding to activation of toll-like receptors (TLRs). It mediates the rather delayed cascade of two TLR-associated signaling cascades, where the other one is dependent ...
, and TRAM. These adapters activate other intracellular molecules such as IRAK1,
IRAK4 IRAK-4 (interleukin-1 receptor-associated kinase 4), in the IRAK family, is a protein kinase involved in signaling innate immune responses from Toll-like receptors. It also supports signaling from T-cell receptors. IRAK4 contains domain structures ...
, TBK1, and
IKKi Ikki may refer to: *''Ikki'', revolts against samurai rule in 15th and 16th century Japan **Ikkō-ikki, ''ikki'' revolts organized by Jōdo Shinshū Buddhists ***Kaga ikki, an ''Ikkō-ikki'' break-away warrior and peasant confederacy based in Kaga ...
that amplify the signal, eventually leading to the
induction Induction, Inducible or Inductive may refer to: Biology and medicine * Labor induction (birth/pregnancy) * Induction chemotherapy, in medicine * Induced stem cells, stem cells derived from somatic, reproductive, pluripotent or other cell t ...
or suppression of genes that cause certain responses. Thousands of genes are activated by TLR signaling, implying that this method constitutes an important gateway for gene modulation.


Ligand-gated ion channels

A ligand-gated ion channel, upon binding with a ligand, changes conformation to open a channel in the cell membrane through which ions relaying signals can pass. An example of this mechanism is found in the receiving cell of a neural
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
. The influx of ions that occurs in response to the opening of these channels induces action potentials, such as those that travel along nerves, by depolarizing the membrane of post-synaptic cells, resulting in the opening of voltage-gated ion channels. An example of an ion allowed into the cell during a ligand-gated ion channel opening is Ca2+; it acts as a second messenger initiating signal transduction cascades and altering the physiology of the responding cell. This results in amplification of the synapse response between synaptic cells by remodelling the dendritic spines involved in the synapse.


Intracellular receptors

Intracellular receptors, such as
nuclear receptor In the field of molecular biology, nuclear receptors are a class of proteins responsible for sensing steroids, thyroid hormones, vitamins, and certain other molecules. These receptors work with other proteins to regulate the expression of speci ...
s and cytoplasmic receptors, are soluble proteins localized within their respective areas. The typical ligands for nuclear receptors are non-polar hormones like the
steroid A steroid is a biologically active organic compound with four rings arranged in a specific molecular configuration. Steroids have two principal biological functions: as important components of cell membranes that alter membrane fluidity; and a ...
hormones testosterone and
progesterone Progesterone (P4) is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens and is the m ...
and derivatives of vitamins A and D. To initiate signal transduction, the ligand must pass through the plasma membrane by passive diffusion. On binding with the receptor, the ligands pass through the nuclear membrane into the
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
, altering gene expression. Activated nuclear receptors attach to the DNA at receptor-specific hormone-responsive element (HRE) sequences, located in the promoter region of the genes activated by the hormone-receptor complex. Due to their enabling gene transcription, they are alternatively called inductors of
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. The ...
. All hormones that act by regulation of gene expression have two consequences in their mechanism of action; their effects are produced after a characteristically long period of time and their effects persist for another long period of time, even after their concentration has been reduced to zero, due to a relatively slow turnover of most enzymes and proteins that would either deactivate or terminate ligand binding onto the receptor. Nucleic receptors have DNA-binding domains containing zinc fingers and a ligand-binding domain; the zinc fingers stabilize DNA binding by holding its phosphate backbone. DNA sequences that match the receptor are usually hexameric repeats of any kind; the sequences are similar but their orientation and distance differentiate them. The ligand-binding domain is additionally responsible for
dimerization A dimer () (''wikt:di-, di-'', "two" + ''-mer'', "parts") is an oligomer consisting of two monomers joined by bonds that can be either strong or weak, Covalent bond, covalent or Intermolecular force, intermolecular. Dimers also have significant im ...
of nucleic receptors prior to binding and providing structures for transactivation used for communication with the translational apparatus. Steroid receptors are a subclass of nuclear receptors located primarily within the cytosol. In the absence of steroids, they associate in an aporeceptor complex containing chaperone or
heatshock protein Heat shock proteins (HSP) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, but are now known to also be expressed during other stresses including expo ...
s (HSPs). The HSPs are necessary to activate the receptor by assisting the protein to
fold Fold, folding or foldable may refer to: Arts, entertainment, and media * ''Fold'' (album), the debut release by Australian rock band Epicure *Fold (poker), in the game of poker, to discard one's hand and forfeit interest in the current pot *Above ...
in a way such that the signal sequence enabling its passage into the nucleus is accessible. Steroid receptors, on the other hand, may be repressive on gene expression when their transactivation domain is hidden. Receptor activity can be enhanced by phosphorylation of
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
residues at their N-terminal as a result of another signal transduction pathway, a process called
crosstalk In electronics, crosstalk is any phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired effect in another circuit or channel. Crosstalk is usually caused by undesired capacitive, induc ...
. Retinoic acid receptors are another subset of nuclear receptors. They can be activated by an endocrine-synthesized ligand that entered the cell by diffusion, a ligand synthesised from a precursor like retinol brought to the cell through the bloodstream or a completely intracellularly synthesised ligand like
prostaglandin The prostaglandins (PG) are a group of physiologically active lipid compounds called eicosanoids having diverse hormone-like effects in animals. Prostaglandins have been found in almost every tissue in humans and other animals. They are derive ...
. These receptors are located in the nucleus and are not accompanied by HSPs. They repress their gene by binding to their specific DNA sequence when no ligand binds to them, and vice versa. Certain intracellular receptors of the immune system are cytoplasmic receptors; recently identified NOD-like receptors (NLRs) reside in the cytoplasm of some eukaryotic cells and interact with ligands using a
leucine-rich repeat A leucine-rich repeat (LRR) is a protein structural motif that forms an α/β horseshoe fold. It is composed of repeating 20–30 amino acid stretches that are unusually rich in the hydrophobic amino acid leucine. These tandem repeats common ...
(LRR) motif similar to TLRs. Some of these molecules like
NOD2 Nucleotide-binding oligomerization domain-containing protein 2 (NOD2), also known as caspase recruitment domain-containing protein 15 (CARD15) or inflammatory bowel disease protein 1 (IBD1), is a protein that in humans is encoded by the ''NOD2'' g ...
interact with RIP2 kinase that activates NF-κB signaling, whereas others like
NALP3 NLR family pyrin domain containing 3 (NLRP3) (previously known as NACHT, LRR and PYD domains-containing protein 3 ALP3and cryopyrin), is a protein that in humans is encoded by the ''NLRP3'' gene located on the long arm of chromosome 1. NLRP3 is ...
interact with inflammatory
caspase Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
s and initiate processing of particular cytokines like interleukin-1β.


Second messengers

First messengers are the signaling molecules (hormones, neurotransmitters, and paracrine/autocrine agents) that reach the cell from the extracellular fluid and bind to their specific receptors. Second messengers are the substances that enter the cytoplasm and act within the cell to trigger a response. In essence, second messengers serve as chemical relays from the plasma membrane to the cytoplasm, thus carrying out intracellular signal transduction.


Calcium

The release of calcium ions from the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
into the cytosol results in its binding to signaling proteins that are then activated; it is then sequestered in the smooth endoplasmic reticulum and the
mitochondria A mitochondrion (; ) is an organelle found in the Cell (biology), cells of most Eukaryotes, such as animals, plants and Fungus, fungi. Mitochondria have a double lipid bilayer, membrane structure and use aerobic respiration to generate adenosi ...
. Two combined receptor/ion channel proteins control the transport of calcium: the InsP3-receptor that transports calcium upon interaction with inositol triphosphate on its cytosolic side; and the
ryanodine receptor Ryanodine receptors (RyR for short) form a class of intracellular calcium channels in various forms of excitable animal tissue like muscles and neurons. There are three major isoforms of the ryanodine receptor, which are found in different tissu ...
named after the alkaloid ryanodine, similar to the InsP3 receptor but having a feedback mechanism that releases more calcium upon binding with it. The nature of calcium in the cytosol means that it is active for only a very short time, meaning its free state concentration is very low and is mostly bound to organelle molecules like calreticulin when inactive. Calcium is used in many processes including muscle contraction, neurotransmitter release from nerve endings, and cell migration. The three main pathways that lead to its activation are GPCR pathways, RTK pathways, and gated ion channels; it regulates proteins either directly or by binding to an enzyme.


Lipid messengers

Lipophilic second messenger molecules are derived from lipids residing in cellular membranes; enzymes stimulated by activated receptors activate the lipids by modifying them. Examples include diacylglycerol and ceramide, the former required for the activation of
protein kinase C In cell biology, Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and t ...
.


Nitric oxide

Nitric oxide (NO) acts as a second messenger because it is a free radical that can diffuse through the plasma membrane and affect nearby cells. It is synthesised from
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the am ...
and oxygen by the NO synthase and works through activation of
soluble guanylyl cyclase Soluble guanylyl cyclase (sGC) is the only known receptor for nitric oxide, NO. It is soluble, i.e. completely intracellular. Most notably, this enzyme is involved in vasodilation. In humans, it is encoded by the genes GUCY1A2, GUCY1A3, GUCY1 ...
, which when activated produces another second messenger, cGMP. NO can also act through covalent modification of proteins or their metal co-factors; some have a redox mechanism and are reversible. It is toxic in high concentrations and causes damage during
stroke A stroke is a medical condition in which poor blood flow to the brain causes cell death. There are two main types of stroke: ischemic, due to lack of blood flow, and hemorrhagic, due to bleeding. Both cause parts of the brain to stop functionin ...
, but is the cause of many other functions like the relaxation of blood vessels,
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
, and penile
erection An erection (clinically: penile erection or penile tumescence) is a physiological phenomenon in which the penis becomes firm, engorged, and enlarged. Penile erection is the result of a complex interaction of psychological, neural, vascular, ...
s.


Redox signaling

In addition to nitric oxide, other electronically activated species are also signal-transducing agents in a process called redox signaling. Examples include superoxide, hydrogen peroxide, carbon monoxide, and
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The unde ...
. Redox signaling also includes active modulation of electronic flows in
semiconductive A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
biological macromolecules.


Cellular responses

Gene activations and metabolism alterations are examples of cellular responses to extracellular stimulation that require signal transduction. Gene activation leads to further cellular effects, since the products of responding genes include instigators of activation; transcription factors produced as a result of a signal transduction cascade can activate even more genes. Hence, an initial stimulus can trigger the expression of a large number of genes, leading to physiological events like the increased uptake of glucose from the blood stream and the migration of
neutrophils Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
to sites of infection. The set of genes and their activation order to certain stimuli is referred to as a
genetic program Genetic may refer to: *Genetics, in biology, the science of genes, heredity, and the variation of organisms **Genetic, used as an adjective, refers to genes ***Genetic disorder, any disorder caused by a genetic mutation, whether inherited or de nov ...
. Mammalian cells require stimulation for cell division and survival; in the absence of growth factor,
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
ensues. Such requirements for extracellular stimulation are necessary for controlling cell behavior in unicellular and multicellular organisms; signal transduction pathways are perceived to be so central to biological processes that a large number of diseases are attributed to their dysregulation. Three basic signals determine cellular growth: * Stimulatory (growth factors) ** Transcription dependent response
For example, steroids act directly as transcription factor (gives slow response, as transcription factor must bind DNA, which needs to be transcribed. Produced mRNA needs to be translated, and the produced protein/peptide can undergo posttranslational modification (PTM)) ** Transcription independent response
For example,
epidermal growth factor Epidermal growth factor (EGF) is a protein that stimulates cell growth and differentiation by binding to its receptor, EGFR. Human EGF is 6-k Da and has 53 amino acid residues and three intramolecular disulfide bonds. EGF was originally descr ...
(EGF) binds the epidermal growth factor receptor (EGFR), which causes dimerization and autophosphorylation of the EGFR, which in turn activates the intracellular signaling pathway . * Inhibitory (cell-cell contact) * Permissive (cell-matrix interactions) The combination of these signals is integrated into altered cytoplasmic machinery which leads to altered cell behaviour.


Major pathways

Following are some major signaling pathways, demonstrating how ligands binding to their receptors can affect second messengers and eventually result in altered cellular responses. *
MAPK/ERK pathway The MAPK/ERK pathway (also known as the Ras-Raf-MEK-ERK pathway) is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell. The signal starts when a signaling ...
: A pathway that couples intracellular responses to the binding of growth factors to cell surface
receptor Receptor may refer to: * Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a ...
s.  This pathway is very complex and includes many protein components.  In many cell types, activation of this pathway promotes cell division, and many forms of cancer are associated with aberrations in it. * cAMP-dependent pathway: In humans, cAMP works by activating protein kinase A (PKA,
cAMP-dependent protein kinase In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulatio ...
) (see picture), and, thus, further effects depend mainly on
cAMP-dependent protein kinase In cell biology, protein kinase A (PKA) is a family of enzymes whose activity is dependent on cellular levels of cyclic AMP (cAMP). PKA is also known as cAMP-dependent protein kinase (). PKA has several functions in the cell, including regulatio ...
, which vary based on the type of cell. * IP3/DAG pathway: PLC cleaves the
phospholipid Phospholipids, are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue (usually a glycerol molecule). Marine phospholipids typ ...
phosphatidylinositol 4,5-bisphosphate (PIP2), yielding diacyl glycerol (DAG) and
inositol 1,4,5-triphosphate Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the ...
(IP3).  DAG remains bound to the membrane, and IP3 is released as a soluble structure into the cytosol.  IP3 then diffuses through the cytosol to bind to IP3 receptors, particular
calcium channel A calcium channel is an ion channel which shows selective permeability to calcium ions. It is sometimes synonymous with voltage-gated calcium channel, although there are also ligand-gated calcium channels. Comparison tables The following tables e ...
s in the
endoplasmic reticulum The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum ( ...
(ER).  These channels are specific to calcium and allow the passage of only calcium to move through.  This causes the cytosolic concentration of Calcium to increase, causing a cascade of intracellular changes and activity.  In addition, calcium and DAG together works to activate PKC, which goes on to phosphorylate other molecules, leading to altered cellular activity.  End-effects include taste, manic depression, tumor promotion, etc.


History

The earliest notion of signal transduction can be traced back to 1855, when Claude Bernard proposed that ductless glands such as the spleen, the thyroid and adrenal glands, were responsible for the release of "internal secretions" with physiological effects.Bradshaw & Dennis (2010) p. 1. Bernard's "secretions" were later named "
hormones A hormone (from the Ancient Greek, Greek participle , "setting in motion") is a class of cell signaling, signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and beh ...
" by
Ernest Starling Ernest Henry Starling (17 April 1866 – 2 May 1927) was a British physiologist who contributed many fundamental ideas to this subject. These ideas were important parts of the British contribution to physiology, which at that time led the world. ...
in 1905. Together with
William Bayliss Sir William Maddock Bayliss (2 May 1860 – 27 August 1924) was an English physiologist. Life He was born in Wednesbury, Staffordshire but shortly thereafter his father, a successful merchant of ornamental ironwork, moved his family to a ...
, Starling had discovered
secretin Secretin is a hormone that regulates water homeostasis throughout the body and influences the environment of the duodenum by regulating secretions in the stomach, pancreas, and liver. It is a peptide hormone produced in the S cells of the duode ...
in 1902. Although many other hormones, most notably
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism o ...
, were discovered in the following years, the mechanisms remained largely unknown. The discovery of
nerve growth factor Nerve growth factor (NGF) is a neurotrophic factor and neuropeptide primarily involved in the regulation of growth, maintenance, proliferation, and survival of certain target neurons. It is perhaps the prototypical growth factor, in that it was on ...
by Rita Levi-Montalcini in 1954, and
epidermal growth factor Epidermal growth factor (EGF) is a protein that stimulates cell growth and differentiation by binding to its receptor, EGFR. Human EGF is 6-k Da and has 53 amino acid residues and three intramolecular disulfide bonds. EGF was originally descr ...
by Stanley Cohen in 1962, led to more detailed insights into the molecular basis of cell signaling, in particular growth factors. Their work, together with
Earl Wilbur Sutherland Earl Wilbur Sutherland Jr. (November 19, 1915 – March 9, 1974) was an American pharmacologist and biochemist born in Burlingame, Kansas. Sutherland won a Nobel Prize in Physiology or Medicine in 1971 "for his discoveries concerning the mechanis ...
's discovery of cyclic AMP in 1956, prompted the redefinition of
endocrine signaling The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is the neu ...
to include only signaling from glands, while the terms autocrine and paracrine began to be used.Bradshaw & Dennis (2010) p. 2. Sutherland was awarded the 1971 Nobel Prize in Physiology or Medicine, while Levi-Montalcini and Cohen shared it in 1986. In 1970, Martin Rodbell examined the effects of
glucagon Glucagon is a peptide hormone, produced by alpha cells of the pancreas. It raises concentration of glucose and fatty acids in the bloodstream, and is considered to be the main catabolic hormone of the body. It is also used as a Glucagon (medicati ...
on a rat's liver cell membrane receptor. He noted that guanosine triphosphate disassociated glucagon from this receptor and stimulated the G-protein, which strongly influenced the cell's metabolism. Thus, he deduced that the G-protein is a transducer that accepts glucagon molecules and affects the cell. For this, he shared the 1994 Nobel Prize in Physiology or Medicine with
Alfred G. Gilman Alfred Goodman Gilman (July 1, 1941 – December 23, 2015) was an American pharmacologist and biochemist. He and Martin Rodbell shared the 1994 Nobel Prize in Physiology or Medicine "for their discovery of G-proteins and the role of these prot ...
. Thus, the characterization of RTKs and GPCRs led to the formulation of the concept of "signal transduction", a word first used in 1972. Some early articles used the terms ''signal transmission'' and ''sensory transduction''. In 2007, a total of 48,377 scientific papers—including 11,211 review papers—were published on the subject. The term first appeared in a paper's title in 1979. Widespread use of the term has been traced to a 1980 review article by Rodbell: Research papers focusing on signal transduction first appeared in large numbers in the late 1980s and early 1990s.


Signal transduction in Immunology

The purpose of this section is to briefly describe some developments in immunology in the 1960s and 1970s, relevant to the initial stages of transmembrane signal transduction, and how they impacted our understanding of immunology, and ultimately of other areas of cell biology. The relevant events begin with the sequencing of
myeloma protein A myeloma protein is an abnormal antibody (immunoglobulin) or (more often) a fragment thereof, such as an immunoglobulin light chain, that is produced in excess by an abnormal monoclonal proliferation of plasma cells, typically in multiple myelom ...
light chains, which are found in abundance in the urine of individuals with
multiple myeloma Multiple myeloma (MM), also known as plasma cell myeloma and simply myeloma, is a cancer of plasma cells, a type of white blood cell that normally produces antibodies. Often, no symptoms are noticed initially. As it progresses, bone pain, an ...
. Biochemical experiments revealed that these so-called Bence Jones proteins consisted of 2 discrete domains –one that varied from one molecule to the next (the V domain) and one that did not (the Fc domain or the
Fragment crystallizable region The fragment crystallizable region (Fc region) is the tail region of an antibody that interacts with cell surface receptors called Fc receptors and some proteins of the complement system. This property allows antibodies to activate the immune ...
). An analysis of multiple V region sequences by Wu and Kabat identified locations within the V region that were hypervariable and which, they hypothesized, combined in the folded protein to form the antigen recognition site. Thus, within a relatively short time a plausible model was developed for the molecular basis of immunological specificity, and for mediation of biological function through the Fc domain. Crystallization of an IgG molecule soon followed ) confirming the inferences based on sequencing, and providing an understanding of immunological specificity at the highest level of resolution. The biological significance of these developments was encapsulated in the theory of clonal selection which holds that a
B cell B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted or ...
has on its surface immunoglobulin receptors whose antigen-binding site is identical to that of antibodies that are secreted by the cell when it encounters an antigen, and more specifically a particular B cell clone secretes antibodies with identical sequences. The final piece of the story, the
Fluid mosaic model The fluid mosaic model explains various observations regarding the structure of functional cell membranes. According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) ...
of the plasma membrane provided all the ingredients for a new model for the initiation of signal transduction; viz, receptor dimerization. The first hints of this were obtained by Becker et al who demonstrated that the extent to which human basophils—for which bivalent
Immunoglobulin E Immunoglobulin E (IgE) is a type of antibody (or immunoglobulin (Ig) " isotype") that has been found only in mammals. IgE is synthesised by plasma cells. Monomers of IgE consist of two heavy chains (ε chain) and two light chains, with the ε c ...
(IgE) functions as a surface receptor – degranulate, depends on the concentration of anti IgE antibodies to which they are exposed, and results in a redistribution of surface molecules, which is absent when monovalent ligand is used. The latter observation was consistent with earlier findings by Fanger et al. These observations tied a biological response to events and structural details of molecules on the cell surface. A preponderance of evidence soon developed that receptor dimerization initiates responses (reviewed in ) in a variety of cell types, including B cells. Such observations led to a number of theoretical (mathematical) developments. The first of these was a simple model proposed by Bell which resolved an apparent paradox: clustering forms stable networks; i.e. binding is essentially irreversible, whereas the affinities of antibodies secreted by B cells increase as the immune response progresses. A theory of the dynamics of cell surface clustering on lymphocyte membranes was developed by
DeLisi DeLisi is a surname. Notable people with that surname include: * Charles DeLisi, Metcalf Professor of Science and Engineering at Boston University Boston University (BU) is a Private university, private research university in Boston, Massachu ...
and Perelson who found the size distribution of clusters as a function of time, and its dependence on the affinity and valence of the ligand. Subsequent theories for basophils and mast cells were developed by Goldstein and Sobotka and their collaborators, all aimed at the analysis of dose-response patterns of immune cells and their biological correlates. For a recent review of clustering in immunological systems see. Ligand binding to cell surface receptors is also critical to motility, a phenomenon that is best understood in single-celled organisms. An example is a detection and response to concentration gradients by bacteria -–the classic mathematical theory appearing in. A recent account can be found in Kirsten Jung, Florian Fabiani, Elisabeth Hoyer, and Jürgen Lassak 2018 Bacterial transmembrane signaling systems and their engineering for biosensing Open Biol. Apr; 8(4): 180023


See also

* Adaptor protein * Scaffold protein *
Biosemiotics Biosemiotics (from the Greek βίος ''bios'', "life" and σημειωτικός ''sēmeiōtikos'', "observant of signs") is a field of semiotics and biology that studies the prelinguistic meaning-making, biological interpretation processes, p ...
* Cell signaling *
Gene regulatory network A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the fun ...
*
Hormonal imprinting Hormonal imprinting (HI) is a phenomenon which takes place at the first encounter between a hormone and its developing receptor in the critical periods of life (in unicellulars during the whole life) and determines the later signal transduction ...
* Metabolic pathway * Protein–protein interaction * Two-component regulatory system


References


External links


Netpath - A curated resource of signal transduction pathways in humans

Signal Transduction - The Virtual Library of Biochemistry, Molecular Biology and Cell Biology

TRANSPATH(R)
- A database about signal transduction pathways
''Sciences STKE - Signal Transduction Knowledge Environment
from the journal ''Science'', published by AAAS. *
UCSD-Nature Signaling Gateway
from Nature Publishing Group
LitInspector
- Signal transduction pathway mining in PubMed abstracts * Huaxian Chen, et al
A Cell Based Immunocytochemical Assay For Monitoring Kinase Signaling Pathways And Drug Efficacy (PDF)
Analytical Biochemistry 338 (2005) 136-142
www.Redoxsignaling.com

Signaling PAthway Database
- Kyushu University
Cell cycle - Homo sapiens (human)
- KEGG PATHWA


Pathway Interaction Database
- National Cancer Institute, NCI
Literature-curated human signaling network, the largest human signaling network database
{{DEFAULTSORT:Signal Transduction Cell biology Cell signaling Neurochemistry