In
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
, a semiprimitive ring or Jacobson semisimple ring or J-semisimple ring is a
ring whose
Jacobson radical is
zero
0 (zero) is a number representing an empty quantity. Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and compl ...
. This is a type of ring more general than a
semisimple ring
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself ...
, but where
simple module In mathematics, specifically in ring theory, the simple modules over a ring ''R'' are the (left or right) modules over ''R'' that are non-zero and have no non-zero proper submodules. Equivalently, a module ''M'' is simple if and only if every ...
s still provide enough information about the ring. Rings such as the ring of
integers
An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
are semiprimitive, and an
artinian semiprimitive ring is just a
semisimple ring
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself ...
. Semiprimitive rings can be understood as
subdirect products of
primitive rings, which are described by the
Jacobson density theorem.
Definition
A ring is called semiprimitive or Jacobson semisimple if its Jacobson radical is the zero
ideal.
A ring is semiprimitive if and only if it has a
faithful semisimple left module. The semiprimitive property is left-right symmetric, and so a ring is semiprimitive if and only if it has a faithful semisimple right module.
A ring is semiprimitive if and only if it is a subdirect product of left primitive rings.
A
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
is semiprimitive if and only if it is a subdirect product of
fields, .
A left
artinian ring
In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...
is semiprimitive if and only if it is
semisimple, . Such rings are sometimes called
semisimple Artinian, .
Examples
* The ring of integers is semiprimitive, but not semisimple.
* Every primitive ring is semiprimitive.
* The
product of two fields is semiprimitive but not primitive.
* Every
von Neumann regular ring
In mathematics, a von Neumann regular ring is a ring ''R'' (associative, with 1, not necessarily commutative) such that for every element ''a'' in ''R'' there exists an ''x'' in ''R'' with . One may think of ''x'' as a "weak inverse" of the eleme ...
is semiprimitive.
Jacobson himself has defined a ring to be "semisimple" if and only if it is a subdirect product of
simple rings, . However, this is a stricter notion, since the
endomorphism ring
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in ...
of a
countably infinite
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbe ...
dimensional vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
is semiprimitive, but not a subdirect product of simple rings, .
References
*
*
*
*
Algebraic structures
Ring theory
{{Abstract-algebra-stub