HOME
*





Subdirect Product
In mathematics, especially in the areas of abstract algebra known as universal algebra, group theory, ring theory, and module theory, a subdirect product is a subalgebra of a direct product that depends fully on all its factors without however necessarily being the whole direct product. The notion was introduced by Garrett Birkhoff, Birkhoff in 1944 and has proved to be a powerful generalization of the notion of direct product. Definition A subdirect product is a subalgebra (in the sense of universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study ...) ''A'' of a direct product Π''iAi'' such that every induced projection (the composite ''pjs'': ''A'' → ''Aj'' of a projection ''p''''j'': Π''iAi'' → ''Aj'' with the subalgebra inclusion ''s'': ''A'' → Π''iAi'') is su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semilattice
In mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa. Semilattices can also be defined algebraically: join and meet are associative, commutative, idempotent binary operations, and any such operation induces a partial order (and the respective inverse order) such that the result of the operation for any two elements is the least upper bound (or greatest lower bound) of the elements with respect to this partial order. A lattice is a partially ordered set that is both a meet- and join-semilattice with respect to the same partial order. Algebraically, a lattice is a set with two associative, commutative idempotent binary operations linked by correspondi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Goursat's Lemma
Goursat's lemma, named after the France, French mathematician Édouard Goursat, is an algebraic theorem about subgroups of the Direct product of groups, direct product of two Group (mathematics), groups. It can be stated more generally in a Goursat variety (and consequently it also holds in any Maltsev variety), from which one recovers a more general version of Zassenhaus lemma, Zassenhaus' butterfly lemma. In this form, Goursat's theorem also implies the snake lemma. Groups Goursat's lemma for groups can be stated as follows. :Let G, G' be groups, and let H be a subgroup of G\times G' such that the two projection (mathematics), projections p_1: H \to G and p_2: H \to G' are surjective (i.e., H is a subdirect product of G and G'). Let N be the kernel of p_2 and N' the Kernel (algebra), kernel of p_1. One can identify N as a normal subgroup of G, and N' as a normal subgroup of G'. Then the image of H in G/N \times G'/N' is the graph of a function, graph of an group isomorphism, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semidirect Product
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in which a group can be made up of two subgroups, one of which is a normal subgroup. * an ''outer'' semidirect product is a way to construct a new group from two given groups by using the Cartesian product as a set and a particular multiplication operation. As with direct products, there is a natural equivalence between inner and outer semidirect products, and both are commonly referred to simply as ''semidirect products''. For finite groups, the Schur–Zassenhaus theorem provides a sufficient condition for the existence of a decomposition as a semidirect product (also known as splitting extension). Inner semidirect product definitions Given a group with identity element , a subgroup , and a normal subgroup , the following statements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perfect Group
In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients (equivalently, its abelianization, which is the universal abelian quotient, is trivial). In symbols, a perfect group is one such that ''G''(1) = ''G'' (the commutator subgroup equals the group), or equivalently one such that ''G''ab = (its abelianization is trivial). Examples The smallest (non-trivial) perfect group is the alternating group ''A''5. More generally, any non-abelian simple group is perfect since the commutator subgroup is a normal subgroup with abelian quotient. Conversely, a perfect group need not be simple; for example, the special linear group over the field with 5 elements, SL(2,5) (or the binary icosahedral group, which is isomorphic to it) is perfect but not simple (it has a non-trivial center containing \left(\begin-1 & 0 \\ 0 & -1\end\right) = \left(\begin4 & 0 \\ 0 & ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Subdirect Irreducible
In the branch of mathematics known as universal algebra (and in its applications), a subdirectly irreducible algebra is an algebra that cannot be factored as a subdirect product of "simpler" algebras. Subdirectly irreducible algebras play a somewhat analogous role in algebra to primes in number theory. Definition A universal algebra ''A'' is said to be subdirectly irreducible when ''A'' has more than one element, and when any subdirect representation of ''A'' includes (as a factor) an algebra isomorphic to ''A'', with the isomorphism being given by the projection map. Examples * The two-element chain, as either a Boolean algebra, a Heyting algebra, a lattice, or a semilattice, is subdirectly irreducible. In fact, the two-element chain is the only subdirectly irreducible distributive lattice. * Any finite chain with two or more elements, as a Heyting algebra, is subdirectly irreducible. (This is not the case for chains of three or more elements as either lattices or semilattices, w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heyting Algebra
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation ''a'' → ''b'' of ''implication'' such that (''c'' ∧ ''a'') ≤ ''b'' is equivalent to ''c'' ≤ (''a'' → ''b''). From a logical standpoint, ''A'' → ''B'' is by this definition the weakest proposition for which modus ponens, the inference rule ''A'' → ''B'', ''A'' ⊢ ''B'', is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by to formalize intuitionistic logic. As lattices, Heyting algebras are distributive. Every Boolean algebra is a Heyting algebra when ''a'' → ''b'' is defined as ¬''a'' ∨ ''b'', as is every complete distributive lattice satisfying a one-sided infinite distributive law when ''a'' → ''b'' is taken to be the supremum of the set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complemented Lattice
In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element ''a'' has a complement, i.e. an element ''b'' satisfying ''a'' ∨ ''b'' = 1 and ''a'' ∧ ''b'' = 0. Complements need not be unique. A relatively complemented lattice is a lattice such that every interval 'c'', ''d'' viewed as a bounded lattice in its own right, is a complemented lattice. An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement. An orthocomplemented lattice satisfying a weak form of the modular law is called an orthomodular lattice. In distributive lattices, complements are unique. Every complemented distributive lattice has a unique orthocomplementation and is in fact a Boolean algebra. Definition and basic properties A complemented lattice is a bounded lattice (with least element 0 a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]