HOME

TheInfoList



OR:

The history of string theory spans several decades of intense research including two superstring revolutions. Through the combined efforts of many researchers,
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
has developed into a broad and varied subject with connections to
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
,
particle In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
and
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
,
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
, and
pure mathematics Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications ...
.


1943–1959: S-matrix theory

String theory represents an outgrowth of S-matrix theory, a research program begun by
Werner Heisenberg Werner Karl Heisenberg (; ; 5 December 1901 – 1 February 1976) was a German theoretical physicist, one of the main pioneers of the theory of quantum mechanics and a principal scientist in the German nuclear program during World War II. He pub ...
in 1943 following
John Archibald Wheeler John Archibald Wheeler (July 9, 1911April 13, 2008) was an American theoretical physicist. He was largely responsible for reviving interest in general relativity in the United States after World War II. Wheeler also worked with Niels Bohr to e ...
's 1937 introduction of the S-matrix. Many prominent theorists picked up and advocated S-matrix theory, starting in the late 1950s and throughout the 1960s. The field became marginalized and discarded in the mid-1970s and disappeared in the 1980s. Physicists neglected it because some of its mathematical methods were alien, and because
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
supplanted it as an experimentally better-qualified approach to the strong interactions. The theory presented a radical rethinking of the foundations of physical laws. By the 1940s it had become clear that the
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
and the
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
were not pointlike particles like the electron. Their
magnetic moment In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude ...
differed greatly from that of a pointlike
spin-½ In quantum mechanics, Spin (physics), spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of . The spin number describes how many symmetrical facets a partic ...
charged particle, too much to attribute the difference to a small perturbation. Their interactions were so strong that they scattered like a small sphere, not like a point. Heisenberg proposed that the strongly interacting particles were in fact extended objects, and because there are difficulties of principle with extended relativistic particles, he proposed that the notion of a space-time point broke down at nuclear scales. Without space and time, it becomes difficult to formulate a physical theory. Heisenberg proposed a solution to this problem: focusing on the observable quantities—those things measurable by experiments. An experiment only sees a microscopic quantity if it can be transferred by a series of events to the classical devices that surround the experimental chamber. The objects that fly to infinity are stable particles, in quantum superpositions of different momentum states. Heisenberg proposed that even when space and time are unreliable, the notion of momentum state, which is defined far away from the experimental chamber, still works. The physical quantity he proposed as fundamental is the quantum mechanical
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
for a group of incoming particles to turn into a group of outgoing particles, and he did not admit that there were any steps in between. The
S-matrix In physics, the ''S''-matrix or scattering matrix is a Matrix (mathematics), matrix that relates the initial state and the final state of a physical system undergoing a scattering, scattering process. It is used in quantum mechanics, scattering ...
is the quantity that describes how a collection of incoming particles turn into outgoing ones. Heisenberg proposed to study the S-matrix directly, without any assumptions about space-time structure. But when transitions from the far-past to the far-future occur in one step with no intermediate steps, it becomes difficult to calculate anything. In
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct phy ...
, the intermediate steps are the fluctuations of fields or equivalently the fluctuations of virtual particles. In this proposed S-matrix theory, there are no local quantities at all. Heisenberg proposed to use unitarity to determine the S-matrix. In all conceivable situations, the sum of the squares of the amplitudes must equal 1. This property can determine the amplitude in a quantum field theory order by order in a perturbation series once the basic interactions are given, and in many quantum field theories the amplitudes grow too fast at high energies to make a unitary S-matrix. But without extra assumptions on the high-energy behavior, unitarity is not enough to determine the scattering, and the proposal was ignored for many years. Heisenberg's proposal was revived in 1956 when
Murray Gell-Mann Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the funda ...
recognized that dispersion relations—like those discovered by Hendrik Kramers and Ralph Kronig in the 1920s (see Kramers–Kronig relations)—allow the formulation of a notion of causality, a notion that events in the future would not influence events in the past, even when the microscopic notion of past and future are not clearly defined. He also recognized that these relations might be useful in computing observables for the case of strong interaction physics. The dispersion relations were analytic properties of the S-matrix,Rickles 2014, p. 29. and they imposed more stringent conditions than those that follow from unitarity alone. This development in S-matrix theory stemmed from Murray Gell-Mann and Marvin Leonard Goldberger's (1954) discovery of crossing symmetry, another condition that the S-matrix had to fulfil. Prominent advocates of the new "dispersion relations" approach included Stanley Mandelstam and Geoffrey Chew, both at
UC Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a public land-grant research university in Berkeley, California, United States. Founded in 1868 and named after the Anglo-Irish philosopher George Berkele ...
at the time. Mandelstam discovered the double dispersion relations, a new and powerful analytic form, in 1958, and believed that it would provide the key to progress in the intractable strong interactions.


1959–1968: Regge theory and bootstrap models

By the late 1950s, many strongly interacting particles of ever higher spins had been discovered, and it became clear that they were not all fundamental. While Japanese physicist Shoichi Sakata proposed that the particles could be understood as
bound state A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them. In quantum physics, a bound state is a quantum state of a ...
s of just three of them (the proton, the neutron and the
Lambda Lambda (; uppercase , lowercase ; , ''lám(b)da'') is the eleventh letter of the Greek alphabet, representing the voiced alveolar lateral approximant . In the system of Greek numerals, lambda has a value of 30. Lambda is derived from the Phoen ...
; see Sakata model), Geoffrey Chew believed that none of these particles are fundamental (for details, see Bootstrap model). Sakata's approach was reworked in the 1960s into the
quark model In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Eig ...
by
Murray Gell-Mann Murray Gell-Mann (; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the funda ...
and
George Zweig George Zweig (; born May 30, 1937) is an American physicist of Russian-Jewish origin. He was trained as a particle physicist under Richard Feynman. He introduced, independently of Murray Gell-Mann, the quark model (although he named it "aces"). ...
by making the charges of the hypothetical constituents fractional and rejecting the idea that they were observed particles. At the time, Chew's approach was considered more mainstream because it did not introduce fractional charge values and because it focused on experimentally measurable S-matrix elements, not on hypothetical pointlike constituents. In 1959, Tullio Regge, a young theorist in Italy, discovered that bound states in quantum mechanics can be organized into families known as Regge trajectories, each family having distinctive angular momenta. This idea was generalized to relativistic quantum mechanics by Stanley Mandelstam, Vladimir Gribov and Marcel Froissart, using a mathematical method (the Sommerfeld–Watson representation) discovered decades earlier by
Arnold Sommerfeld Arnold Johannes Wilhelm Sommerfeld (; 5 December 1868 – 26 April 1951) was a German Theoretical physics, theoretical physicist who pioneered developments in Atomic physics, atomic and Quantum mechanics, quantum physics, and also educated and ...
and Kenneth M. Watson: the result was dubbed the Froissart–Gribov formula. In 1961, Geoffrey Chew and Steven Frautschi recognized that
meson In particle physics, a meson () is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles, the ...
s had straight line Regge trajectories (in their scheme, spin is plotted against mass squared on a so-called Chew–Frautschi plot), which implied that the scattering of these particles would have very strange behavior—it should fall off exponentially quickly at large angles. With this realization, theorists hoped to construct a theory of composite particles on Regge trajectories, whose scattering amplitudes had the
asymptotic In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates Limit of a function#Limits at infinity, tends to infinity. In pro ...
form demanded by Regge theory. In 1967, a notable step forward in the bootstrap approach was the principle of DHS duality introduced by Richard Dolen, David Horn, and Christoph Schmid in 1967, at
Caltech The California Institute of Technology (branded as Caltech) is a private university, private research university in Pasadena, California, United States. The university is responsible for many modern scientific advancements and is among a small g ...
(the original term for it was "average duality" or "finite energy sum rule (FESR) duality"). The three researchers noticed that Regge pole exchange (at high energy) and resonance (at low energy) descriptions offer multiple representations/approximations of one and the same physically observable process.


1968–1974: Dual resonance model

The first model in which hadronic particles essentially follow the Regge trajectories was the dual resonance model that was constructed by Gabriele Veneziano in 1968, who noted that the
Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
beta function In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral : \Beta(z_1,z_2) = \int_0^1 t^ ...
could be used to describe 4-particle scattering amplitude data for such particles. The Veneziano scattering amplitude (or Veneziano model) was quickly generalized to an ''N''-particle amplitude by Ziro Koba and Holger Bech Nielsen (their approach was dubbed the Koba–Nielsen formalism), and to what are now recognized as closed strings by Miguel Virasoro and Joel A. Shapiro (their approach was dubbed the Shapiro–Virasoro model). In 1969, the Chan–Paton rules (proposed by Jack E. Paton and Hong-Mo Chan) enabled
isospin In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. Isospin is also known as isobaric spin or isotopic spin. Isospin symmetry is a subset of the flavour symmetr ...
factors to be added to the Veneziano model. In 1969–70,
Yoichiro Nambu was a Japanese-American physicist and professor at the University of Chicago. Known for his groundbreaking contributions to theoretical physics, Nambu was the originator of the theory of spontaneous symmetry breaking, a concept that revoluti ...
, Holger Bech Nielsen, and
Leonard Susskind Leonard Susskind (; born June 16, 1940)his 60th birth anniversary was celebrated with a special symposium at Stanford University.in Geoffrey West's introduction, he gives Suskind's current age as 74 and says his birthday was recent. is an Americ ...
presented a physical interpretation of the Veneziano amplitude by representing nuclear forces as vibrating, one-dimensional strings. However, this string-based description of the strong force made many predictions that directly contradicted experimental findings. In 1971, Pierre Ramond and, independently, John H. Schwarz and André Neveu attempted to implement fermions into the dual model. This led to the concept of "spinning strings", and pointed the way to a method for removing the problematic
tachyon A tachyon () or tachyonic particle is a hypothetical particle that always travels Faster-than-light, faster than light. Physicists posit that faster-than-light particles cannot exist because they are inconsistent with the known Scientific law#L ...
(see RNS formalism). Dual resonance models for strong interactions were a relatively popular subject of study between 1968 and 1973. The scientific community lost interest in string theory as a theory of strong interactions in 1973 when
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
became the main focus of theoretical research (mainly due to the theoretical appeal of its asymptotic freedom).


1974–1984: Bosonic string theory and superstring theory

In 1974, John H. Schwarz and Joël Scherk, and independently Tamiaki Yoneya, studied the
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-intege ...
-like patterns of string vibration and found that their properties exactly matched those of the
graviton In theories of quantum gravity, the graviton is the hypothetical elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with re ...
, the gravitational force's hypothetical messenger particle. Schwarz and Scherk argued that string theory had failed to catch on because physicists had underestimated its scope. This led to the development of bosonic string theory. String theory is formulated in terms of the Polyakov action, which describes how strings move through space and time. Like springs, the strings tend to contract to minimize their potential energy, but conservation of energy prevents them from disappearing, and instead they oscillate. By applying the ideas of
quantum mechanics Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
to strings it is possible to deduce the different vibrational modes of strings, and that each vibrational state appears to be a different particle. The mass of each particle, and the fashion with which it can interact, are determined by the way the string vibrates—in essence, by the " note" the string "sounds." The scale of notes, each corresponding to a different kind of particle, is termed the "
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
" of the theory. Early models included both ''open'' strings, which have two distinct endpoints, and ''closed'' strings, where the endpoints are joined to make a complete loop. The two types of string behave in slightly different ways, yielding two spectra. Not all modern string theories use both types; some incorporate only the closed variety. The earliest string model has several problems: it has a critical dimension ''D'' = 26, a feature that was originally discovered by
Claud Lovelace Claud Lovelace (16 January 1934 – 7 September 2012) was a theoretical physics, theoretical physicist noted for his contributions to string theory, specifically, the idea that strings did not have to be restricted to the four dimensions of spacet ...
in 1971; the theory has a fundamental instability, the presence of tachyons (see
tachyon condensation Tachyon condensation is a process in particle physics in which a system can lower its potential energy by spontaneously producing particles. The end result is a "condensate" of particles that fills the volume of the system. Tachyon condensation is ...
); additionally, the spectrum of particles contains only
bosons In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0, 1, 2, ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have half odd-integer ...
, particles like the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
that obey particular rules of behavior. While bosons are a critical ingredient of the Universe, they are not its only constituents. Investigating how a string theory may include
fermion In particle physics, a fermion is a subatomic particle that follows Fermi–Dirac statistics. Fermions have a half-integer spin (spin 1/2, spin , Spin (physics)#Higher spins, spin , etc.) and obey the Pauli exclusion principle. These particles i ...
s in its spectrum led to the invention of
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
(in the West) in 1971, a mathematical transformation between bosons and fermions. String theories that include fermionic vibrations are now known as superstring theories. In 1977, the GSO projection (named after Ferdinando Gliozzi, Joël Scherk, and David I. Olive) led to a family of tachyon-free unitary free string theories, the first consistent superstring theories (see below).


1984–1994: First superstring revolution

The first superstring revolution is a period of important discoveries that began in 1984. It was realized that string theory was capable of describing all
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a c ...
s as well as the interactions between them. Hundreds of physicists started to work on
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
as the most promising idea to unify physical theories. The revolution was started by a discovery of anomaly cancellation in type I string theory via the Green–Schwarz mechanism (named after Michael Green and John H. Schwarz) in 1984. The ground-breaking discovery of the heterotic string was made by
David Gross David Jonathan Gross (; born February 19, 1941) is an American theoretical physicist and string theorist. Along with Frank Wilczek and David Politzer, he was awarded the 2004 Nobel Prize in Physics for their discovery of asymptotic freedom. ...
, Jeffrey Harvey, Emil Martinec, and Ryan Rohm in 1985. It was also realized by
Philip Candelas Philip Candelas, (born 24 October 1951, London, UK) is a British physicist and mathematician. After 20 years at the University of Texas at Austin, he served as Rouse Ball Professor of Mathematics at the University of Oxford until 2020 and is a F ...
, Gary Horowitz,
Andrew Strominger Andrew Eben Strominger (; born 1955) is an American theoretical physicist who is the director of Harvard's Center for the Fundamental Laws of Nature. He has made significant contributions to quantum gravity and string theory. These include his ...
, and
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
in 1985 that to obtain N=1
supersymmetry Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It propo ...
, the six small extra dimensions (the ''D'' = 10 critical dimension of superstring theory had been originally discovered by John H. Schwarz in 1972) need to be compactified on a Calabi–Yau manifold. (In string theory, compactification is a generalization of Kaluza–Klein theory, which was first proposed in the 1920s.) By 1985, five separate superstring theories had been described: type I,Green, M. B., Schwarz, J. H. (1982). "Supersymmetrical string theories." ''Physics Letters B'', 109, 444–448 (this paper classified the consistent ten-dimensional superstring theories and gave them the names Type I, Type IIA, and Type IIB). type II (IIA and IIB), and heterotic . '' Discover'' magazine in the November 1986 issue (vol. 7, #11) featured a cover story written by Gary Taubes, "Everything's Now Tied to Strings", which explained string theory for a popular audience. In 1987, , and Paul Townsend showed that there are no superstrings in eleven dimensions (the largest number of dimensions consistent with a single graviton in
supergravity In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as ...
theories), but supermembranes.


1994–2003: Second superstring revolution

In the early 1990s, Edward Witten and others found strong evidence that the different superstring theories were different limits of an 11-dimensional theory that became known as
M-theory In physics, M-theory is a theory that unifies all Consistency, consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1 ...
(for details, see
Introduction to M-theory In non-technical terms, M-theory presents an idea about the basic substance of the universe. Although a complete mathematical formulation of M-theory is not known, the general approach is the leading contender for a universal "Theory of Everythi ...
). These discoveries sparked the second superstring revolution that took place approximately between 1994 and 1995. The different versions of
superstring theory Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string t ...
were unified, as long hoped, by new equivalences. These are known as S-duality, T-duality, U-duality, mirror symmetry, and conifold transitions. The different theories of strings were also related to M-theory. In 1995,
Joseph Polchinski Joseph Gerard Polchinski Jr. (; May 16, 1954 – February 2, 2018) was an American theoretical physicist and string theorist. Biography Polchinski was born in White Plains, New York, the elder of two children to Joseph Gerard Polchinski Sr. (19 ...
discovered that the theory requires the inclusion of higher-dimensional objects, called
D-brane In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open strings can end with Dirichlet boundary conditions, after which they are named. D-branes are typically classified by their spatial dimensi ...
s: these are the sources of electric and magnetic Ramond–Ramond fields that are required by string duality. D-branes added additional rich mathematical structure to the theory, and opened possibilities for constructing realistic cosmological models in the theory (for details, see Brane cosmology). In 1997–98, Juan Maldacena conjectured a relationship between type IIB string theory and ''N'' = 4 supersymmetric Yang–Mills theory, a
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
. This conjecture, called the AdS/CFT correspondence, has generated a great deal of interest in
high energy physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
. It is a realization of the holographic principle, which has far-reaching implications: the AdS/CFT correspondence has helped elucidate the mysteries of
black holes A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
suggested by
Stephen Hawking Stephen William Hawking (8January 194214March 2018) was an English theoretical physics, theoretical physicist, cosmologist, and author who was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between ...
's work and is believed to provide a resolution of the black hole information paradox.


2003–present

In 2003, Michael R. Douglas's discovery of the
string theory landscape In string theory, the string theory landscape (or landscape of vacua) is the collection of possible false vacua,The number of metastable vacua is not known exactly, but commonly quoted estimates are of the order 10500. See M. Douglas, "The stat ...
, which suggests that string theory has a large number of inequivalent false vacua, led to much discussion of what string theory might eventually be expected to predict, and how
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', with the meaning of "a speaking of the wo ...
can be incorporated into the theory. A possible mechanism of string theory vacuum stabilization (the KKLT mechanism) was proposed in 2003 by Shamit Kachru, Renata Kallosh, Andrei Linde, and Sandip Trivedi. Much of the present-day research is focused on characterizing the " swampland" of theories incompatible with
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the v ...
. The Ryu–Takayanagi conjecture introduced many concepts from quantum information into string theory.


See also

* History of quantum field theory * History of loop quantum gravity * Strings (conference)


Notes


References

*


Further reading

* * * * {{History of physics String theory History of physics