HOME

TheInfoList



OR:

Roentgenium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their atomic nucleus, nuclei, including the pure Chemical substance, substance consisting only of that species. Unlike chemical compounds, chemical elements canno ...
with the
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Rg and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of ever ...
111. It is an extremely radioactive
synthetic element A synthetic element is one of 24 known chemical elements that do not occur naturally on Earth: they have been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; ...
that can be created in a laboratory but is not found in nature. The most stable known isotope, roentgenium-282, has a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ...
of 100 seconds, although the unconfirmed roentgenium-286 may have a longer half-life of about 10.7 minutes. Roentgenium was first created in 1994 by the
GSI Helmholtz Centre for Heavy Ion Research The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as th ...
near
Darmstadt Darmstadt () is a city in the state of Hesse in Germany, located in the southern part of the Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the fourth largest city in the state of Hesse ...
, Germany. It is named after the physicist
Wilhelm Röntgen Wilhelm Conrad Röntgen (; ; 27 March 184510 February 1923) was a German mechanical engineer and physicist, who, on 8 November 1895, produced and detected electromagnetic radiation in a wavelength range known as X-rays or Röntgen rays, an achie ...
( also spelled Roentgen), who discovered
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s. Only a few roentgenium atoms have ever been synthesized, and they have no current practical application beyond that of scientific study. In the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, it is a
d-block A block of the periodic table is a set of elements unified by the atomic orbitals their valence electrons or vacancies lie in. The term appears to have been first used by Charles Janet. Each block is named after its characteristic orbital: s-blo ...
transactinide element Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the l ...
. It is a member of the 7th period and is placed in the
group 11 element Group 11, by modern IUPAC numbering, is a group of chemical elements in the periodic table, consisting of copper (Cu), silver (Ag), and gold (Au), and roentgenium (Rg), although no chemical experiments have yet been carried out to confirm tha ...
s, although no chemical experiments have been carried out to confirm that it behaves as the heavier homologue to
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
in group 11 as the ninth member of the 6d series of
transition metal In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can ...
s. Roentgenium is calculated to have similar properties to its lighter homologues,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
,
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
, and gold, although it may show some differences from them. Roentgenium is thought to be a solid at room temperature and to have a metallic appearance in its regular state.


Introduction


History


Official discovery

Roentgenium was first synthesized by an international team led by
Sigurd Hofmann Sigurd Hofmann (15 February 1944 – 17 June 2022) was a physicist known for his work on superheavy elements. Biography Hofmann discovered his love for physics at the Max Planck High School in Groß-Umstadt, Germany, where he graduated in 19 ...
at the
Gesellschaft für Schwerionenforschung The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as th ...
(GSI) in
Darmstadt Darmstadt () is a city in the state of Hesse in Germany, located in the southern part of the Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the fourth largest city in the state of Hesse ...
,
Germany Germany,, officially the Federal Republic of Germany, is a country in Central Europe. It is the second most populous country in Europe after Russia, and the most populous member state of the European Union. Germany is situated betwee ...
, on December 8, 1994. The team bombarded a target of
bismuth-209 Bismuth-209 (209Bi) is the isotope of bismuth with the longest known half-life of any radioisotope that undergoes α-decay (alpha decay). It has 83 protons and a magic number of 126 neutrons, and an atomic mass of 208.9803987 amu (atomic mass un ...
with accelerated nuclei of
nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
-64 and detected three nuclei of the
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers ( mass num ...
roentgenium-272: : + → + This reaction had previously been conducted at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
in
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of ''naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one o ...
(then in the
Soviet Union The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nationa ...
) in 1986, but no atoms of 272Rg had then been observed. (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879–886, 1991) In 2001, the
IUPAC/IUPAP Joint Working Party The IUPAC/IUPAP Joint Working Party is a group convened periodically by the International Union of Pure and Applied Chemistry (IUPAC) and the International Union of Pure and Applied Physics (IUPAP) to consider claims for discovery and naming of new ...
(JWP) concluded that there was insufficient evidence for the discovery at that time. The GSI team repeated their experiment in 2002 and detected three more atoms. In their 2003 report, the JWP decided that the GSI team should be acknowledged for the discovery of this element.


Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, roentgenium should be known as ''eka-
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
''. In 1979, IUPAC published recommendations according to which the element was to be called ''unununium'' (with the corresponding symbol of ''Uuu''), a systematic element name as a
placeholder Placeholder may refer to: Language * Placeholder name, a term or terms referring to something or somebody whose name is not known or, in that particular context, is not significant or relevant. * Filler text, text generated to fill space or provi ...
, until the element was discovered (and the discovery then confirmed) and a permanent name was decided on. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who called it ''element 111'', with the symbol of ''E111'', ''(111)'' or even simply ''111''. The name ''roentgenium'' (Rg) was suggested by the GSI team in 2004, to honor the German physicist
Wilhelm Conrad Röntgen Wilhelm may refer to: People and fictional characters * William Charles John Pitcher, costume designer known professionally as "Wilhelm" * Wilhelm (name), a list of people and fictional characters with the given name or surname Other uses * Mount ...
, the discoverer of
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s. This name was accepted by
IUPAC The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
on November 1, 2004.


Isotopes

Roentgenium has no stable or naturally occurring isotopes. Several radioactive isotopes have been synthesized in the laboratory, either by fusion of the nuclei of lighter elements or as intermediate decay products of heavier elements. Nine different isotopes of roentgenium have been reported with atomic masses 272, 274, 278–283, and 286 (283 and 286 unconfirmed), two of which, roentgenium-272 and roentgenium-274, have known but unconfirmed
metastable state In chemistry and physics, metastability denotes an intermediate energetic state within a dynamical system other than the system's state of least energy. A ball resting in a hollow on a slope is a simple example of metastability. If the ball ...
s. All of these decay through alpha decay or spontaneous fission, though 280Rg may also have an
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. ...
branch.


Stability and half-lives

All roentgenium isotopes are extremely unstable and radioactive; in general, the heavier isotopes are more stable than the lighter. The most stable known roentgenium isotope, 282Rg, is also the heaviest known roentgenium isotope; it has a half-life of 100 seconds. The unconfirmed 286Rg is even heavier and appears to have an even longer half-life of about 10.7 minutes, which would make it one of the longest-lived superheavy nuclides known; likewise, the unconfirmed 283Rg appears to have a long half-life of about 5.1 minutes. The isotopes 280Rg and 281Rg have also been reported to have half-lives over a second. The remaining isotopes have half-lives in the millisecond range.


Predicted properties

Other than nuclear properties, no properties of roentgenium or its compounds have been measured; this is due to its extremely limited and expensive production and the fact that roentgenium (and its parents) decays very quickly. Properties of roentgenium metal remain unknown and only predictions are available.


Chemical

Roentgenium is the ninth member of the 6d series of
transition metals In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that ca ...
. Calculations on its
ionization potential Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
s and atomic and
ionic radii Ionic radius, ''r''ion, is the radius of a monatomic ion in an ionic crystal structure. Although neither atoms nor ions have sharp boundaries, they are treated as if they were hard spheres with radii such that the sum of ionic radii of the cation ...
are similar to that of its lighter homologue
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile ...
, thus implying that roentgenium's basic properties will resemble those of the other
group 11 element Group 11, by modern IUPAC numbering, is a group of chemical elements in the periodic table, consisting of copper (Cu), silver (Ag), and gold (Au), and roentgenium (Rg), although no chemical experiments have yet been carried out to confirm tha ...
s,
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
,
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
, and gold; however, it is also predicted to show several differences from its lighter homologues. Roentgenium is predicted to be a
noble metal A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals ( ruthenium, rhodium, palladium, o ...
. The
standard electrode potential In electrochemistry, standard electrode potential E^\ominus, or E^\ominus_, is a measure of the reducing power of any element or compound. The IUPAC "Gold Book" defines it as: ''"the value of the standard emf (electromotive force) of a cell in wh ...
of 1.9 V for the Rg3+/Rg couple is greater than that of 1.5 V for the Au3+/Au couple. Roentgenium's predicted first ionisation energy of 1020 kJ/mol almost matches that of the
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains th ...
at 1037 kJ/mol. Based on the most stable oxidation states of the lighter group 11 elements, roentgenium is predicted to show stable +5 and +3 oxidation states, with a less stable +1 state. The +3 state is predicted to be the most stable. Roentgenium(III) is expected to be of comparable reactivity to gold(III), but should be more stable and form a larger variety of compounds. Gold also forms a somewhat stable −1 state due to relativistic effects, and it has been suggested roentgenium may do so as well: nevertheless, the electron affinity of roentgenium is expected to be around , significantly lower than gold's value of , so roentgenides may not be stable or even possible. The 6d orbitals are destabilized by
relativistic effects Relativistic quantum chemistry combines relativistic mechanics with quantum chemistry to calculate elemental properties and structure, especially for the heavier elements of the periodic table. A prominent example is an explanation for the color of ...
and
spin–orbit interaction In quantum physics, the spin–orbit interaction (also called spin–orbit effect or spin–orbit coupling) is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orb ...
s near the end of the fourth transition metal series, thus making the high oxidation state roentgenium(V) more stable than its lighter homologue gold(V) (known only in
gold pentafluoride Gold(V) fluoride is the inorganic compound with the formula Au2F10. This fluoride compound features gold in its highest known oxidation state. This red solid dissolves in hydrogen fluoride but these solutions decompose, liberating fluorine. Th ...
, Au2F10) as the 6d electrons participate in bonding to a greater extent. The spin-orbit interactions stabilize molecular roentgenium compounds with more bonding 6d electrons; for example, is expected to be more stable than , which is expected to be more stable than . The stability of is homologous to that of ; the silver analogue is unknown and is expected to be only marginally stable to decomposition to and F2. Moreover, Rg2F10 is expected to be stable to decomposition, exactly analogous to the Au2F10, whereas Ag2F10 should be unstable to decomposition to Ag2F6 and F2.
Gold heptafluoride Gold heptafluoride is a gold(V) compound with the empirical formula AuF7. The synthesis of this compound was first reported in 1986. However, current calculations suggest that the structure of the synthesized molecule was actually a difluorine li ...
, AuF7, is known as a gold(V) difluorine complex AuF5·F2, which is lower in energy than a true gold(VII) heptafluoride would be; RgF7 is instead calculated to be more stable as a true roentgenium(VII) heptafluoride, although it would be somewhat unstable, its decomposition to Rg2F10 and F2 releasing a small amount of energy at room temperature. Roentgenium(I) is expected to be difficult to obtain. Gold readily forms the
cyanide Cyanide is a naturally occurring, rapidly acting, toxic chemical that can exist in many different forms. In chemistry, a cyanide () is a chemical compound that contains a functional group. This group, known as the cyano group, consists of ...
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
, which is used in its extraction from ore through the process of
gold cyanidation Gold cyanidation (also known as the cyanide process or the MacArthur-Forrest process) is a hydrometallurgical technique for extracting gold from low-grade ore by converting the gold to a water-soluble coordination complex. It is the most commonl ...
; roentgenium is expected to follow suit and form . The probable chemistry of roentgenium has received more interest than that of the two previous elements,
meitnerium Meitnerium is a synthetic chemical element with the symbol Mt and atomic number 109. It is an extremely radioactive synthetic element (an element not found in nature, but can be created in a laboratory). The most stable known isotope, meitnerium-2 ...
and darmstadtium, as the valence s- subshells of the group 11 elements are expected to be relativistically contracted most strongly at roentgenium. Calculations on the molecular compound Rg H show that relativistic effects double the strength of the roentgenium–hydrogen bond, even though spin–orbit interactions also weaken it by . The compounds AuX and RgX, where X = F, Cl, Br, O, Au, or Rg, were also studied. Rg+ is predicted to be the softest metal ion, even softer than Au+, although there is disagreement on whether it would behave as an
acid In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a se ...
or a base. In aqueous solution, Rg+ would form the aqua ion g(H2O)2sup>+, with an Rg–O bond distance of 207.1  pm. It is also expected to form Rg(I) complexes with
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous ...
,
phosphine Phosphine (IUPAC name: phosphane) is a colorless, flammable, highly toxic compound with the chemical formula , classed as a pnictogen hydride. Pure phosphine is odorless, but technical grade samples have a highly unpleasant odor like rotting ...
, and
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is poisonous, corrosive, and flammable, with trace amounts in ambient atmosphere having a characteristic foul odor of rotten eggs. The under ...
.


Physical and atomic

Roentgenium is expected to be a solid under normal conditions and to crystallize in the
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
structure, unlike its lighter congeners which crystallize in the
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
structure, due to its being expected to have different electron charge densities from them. It should be a very heavy metal with a
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematicall ...
of around 22–24 g/cm3; in comparison, the densest known element that has had its density measured,
osmium Osmium (from Greek grc, ὀσμή, osme, smell, label=none) is a chemical element with the symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, ...
, has a density of 22.61 g/cm3. The stable group 11 elements, copper, silver, and gold, all have an outer electron configuration (n−1)d10ns1. For each of these elements, the first excited state of their atoms has a configuration (n−1)d9ns2. Due to spin-orbit coupling between the d electrons, this state is split into a pair of energy levels. For copper, the difference in energy between the ground state and lowest excited state causes the metal to appear reddish. For silver, the energy gap widens and it becomes silvery. However, as the atomic number increases, the excited levels are stabilized by relativistic effects and in gold the energy gap decreases again and it appears gold. For roentgenium, calculations indicate that the 6d97s2 level is stabilized to such an extent that it becomes the ground state and the 6d107s1 level becomes the first excited state. The resulting energy difference between the new ground state and the first excited state is similar to that of silver and roentgenium is expected to be silvery in appearance. The atomic radius of roentgenium is expected to be around 138 pm.


Experimental chemistry

Unambiguous determination of the chemical characteristics of roentgenium has yet to have been established due to the low yields of reactions that produce roentgenium isotopes. For chemical studies to be carried out on a
transactinide Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic number greater than 103. The superheavy elements are those beyond the actinides in the periodic table; the l ...
, at least four atoms must be produced, the half-life of the isotope used must be at least 1 second, and the rate of production must be at least one atom per week. Even though the half-life of 282Rg, the most stable confirmed roentgenium isotope, is 100 seconds, long enough to perform chemical studies, another obstacle is the need to increase the rate of production of roentgenium isotopes and allow experiments to carry on for weeks or months so that statistically significant results can be obtained. Separation and detection must be carried out continuously to separate out the roentgenium isotopes and allow automated systems to experiment on the gas-phase and solution chemistry of roentgenium, as the yields for heavier elements are predicted to be smaller than those for lighter elements. However, the experimental chemistry of roentgenium has not received as much attention as that of the heavier elements from
copernicium Copernicium is a synthetic chemical element with the symbol Cn and atomic number 112. Its known isotopes are extremely radioactive, and have only been created in a laboratory. The most stable known isotope, copernicium-285, has a half-life of ap ...
to
livermorium Livermorium is a synthetic chemical element with the symbol Lv and has an atomic number of 116. It is an extremely radioactive element that has only been created in a laboratory setting and has not been observed in nature. The element is named afte ...
, despite early interest in theoretical predictions due to relativistic effects on the ''n''s subshell in group 11 reaching a maximum at roentgenium. The isotopes 280Rg and 281Rg are promising for chemical experimentation and may be produced as the granddaughters of the
moscovium Moscovium is a synthetic element with the symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, ...
isotopes 288Mc and 289Mc respectively; their parents are the nihonium isotopes 284Nh and 285Nh, which have already received preliminary chemical investigations.


See also

* Island of stability


Explanatory notes


Citations


General bibliography

* * * * *


External links


Roentgenium
at ''
The Periodic Table of Videos ''Periodic Videos'' (also known as ''The Periodic Table of Videos'') is a video project and YouTube channel on chemistry. It consists of a series of videos about chemical elements and the periodic table, with additional videos on other topics i ...
'' (University of Nottingham) {{Authority control Chemical elements Chemical elements with body-centered cubic structure Transition metals Synthetic elements