Darmstadtium
   HOME
*



picture info

Darmstadtium
Darmstadtium is a chemical element with the symbol Ds and atomic number 110. It is an extremely radioactive synthetic element. The most stable known isotope, darmstadtium-281, has a half-life of approximately 12.7 seconds. Darmstadtium was first created in 1994 by the GSI Helmholtz Centre for Heavy Ion Research in the city of Darmstadt, Germany, after which it was named. In the periodic table, it is a d-block transactinide element. It is a member of the 7th period and is placed in the group 10 elements, although no chemical experiments have yet been carried out to confirm that it behaves as the heavier homologue to platinum in group 10 as the eighth member of the 6d series of transition metals. Darmstadtium is calculated to have similar properties to its lighter homologues, nickel, palladium, and platinum. Introduction History Discovery Darmstadtium was first created on November 9, 1994, at the Institute for Heavy Ion Research (Gesellschaft für Schwerionenforschung, GS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Group 10 Element
Group 10, numbered by current IUPAC style, is the group of chemical elements in the periodic table that consists of nickel (Ni), palladium (Pd), platinum (Pt), and darmstadtium (Ds). All are d-block transition metals. All known isotopes of darmstadtium are radioactive with short half-lives, and are not known to occur in nature; only minute quantities have been synthesized in laboratories. Characteristics Chemical properties The ground state electronic configurations of palladium and platinum are exceptions to Madelung's rule. According to Madelung's rule, the electronic configuration of palladium and platinum are expected to be r5s2 4d8 and e4f14 6d2 5d8 respectively. However, the 5s orbital of palladium is empty, and the 6s orbital of platinum is only partially filled. The relativistic stabilization of the 7s orbital is the explanation to the predicted electron configuration of darmstadtium, which, unusually for this group, conforms to that predicted by the Aufbau princ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Victor Ninov
Victor Ninov ( bg, Виктор Нинов, born June 27, 1959) is a Bulgarian physicist and former researcher who worked primarily in creating heavy elements. He is known for the co-discoveries of elements darmstadtium, 110, roentgenium, 111, and copernicium, 112 (darmstadtium, roentgenium and copernicium). Ninov also claimed the creation of elements livermorium, 116 and oganesson, 118; however, an investigation concluded that he had falsified the evidence. The repercussions of the affair had an impact on the guidelines of conduct for several research institutions. Early life Victor Ninov was born in People's Republic of Bulgaria, Bulgaria on June 27, 1959. He grew up in the capital city of Sofia. In the 1970s, when Ninov was a teenager, he and his family left for West Germany; they bounced around from house to house. Shortly after the move Victor's father went missing; he was found dead six months later in the Bulgarian foothills due to causes unknown. Career Victor Nin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symbol (chemistry)
Chemical symbols are the abbreviations used in chemistry for chemical elements, functional groups and chemical compounds. Element symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised. History Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention. For example, Pb is the symbol for lead (''plumbum'' in Latin); Hg is the symbol for mercury (''hydrargyrum'' in Greek); and He is the symbol for helium (a new Latin name) because helium was not known in ancient Roman times. Some symbols come from other sources, like W for tungsten (''Wolfram'' in German) which was not known in Roman times. A three-letter temporary symbol may be assigned to a newly synthesized (or not yet synthesized) element. For example, "Uno" was the temporary symbol fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Darmstadt
Darmstadt () is a city in the States of Germany, state of Hesse in Germany, located in the southern part of the Frankfurt Rhine Main Area, Rhine-Main-Area (Frankfurt Metropolitan Region). Darmstadt has around 160,000 inhabitants, making it the fourth largest city in the state of Hesse after Frankfurt am Main, Wiesbaden, and Kassel. Darmstadt holds the official title "City of Science" (german: link=no, Wissenschaftsstadt) as it is a major centre of scientific institutions, universities, and high-technology companies. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the European Space Operations Centre (ESOC) are located in Darmstadt, as well as Gesellschaft für Schwerionenforschung, GSI Centre for Heavy Ion Research, where several chemical elements such as bohrium (1981), meitnerium (1982), hassium (1984), darmstadtium (1994), roentgenium (1994), and copernicium (1996) were discovered. The existence of the following elements were also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transition Metal
In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. They are the elements that can use d orbitals as valence orbitals to form chemical bonds. The lanthanide and actinide elements (the f-block) are called inner transition metals and are sometimes considered to be transition metals as well. Since they are metals, they are lustrous and have good electrical and thermal conductivity. Most (with the exception of group 11 and group 12) are hard and strong, and have high melting and boiling temperatures. They form compounds in any of two or more different oxidation states and bind to a variety of ligands to form coordination complexes that are often coloured. They form many useful alloys and are often employed as catalysts in elemental form or in compounds such as coordination complexes and oxides. Most are strongly param ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sigurd Hofmann
Sigurd Hofmann (15 February 1944 – 17 June 2022) was a physicist known for his work on superheavy elements. Biography Hofmann discovered his love for physics at the Max Planck High School in Groß-Umstadt, Germany, where he graduated in 1963. He studied physics at the Technical University in Darmstadt ( Diploma, 1969, and thesis at the Institute of Nuclear Physics with Egbert Kankeleit and Karl Wien, 1974). From 1974 to 1989 he was responsible for the detection and identification of nuclei produced in heavy ion reactions at the velocity separator SHIP (Separator for Heavy Ion reaction Products) at the GSI Helmholtz Centre for Heavy Ion Research. He was working in the Department Nuclear Chemistry II headed by Peter Armbruster. From 1989 he was leading, after Gottfried Münzenberg, the experiments for the synthesis of new elements. From 1998 he was Honorary Professor at the Goethe-Universität in Frankfurt am Main. He was the leading scientist with the discovery experiments ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gesellschaft Für Schwerionenforschung
The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as the Society for Heavy Ion Research (german: Gesellschaft für Schwerionenforschung), abbreviated GSI, to conduct research on and with heavy-ion accelerators. It is the only major user research center in the State of Hesse. The laboratory performs basic and applied research in physics and related natural science disciplines. Main fields of study include plasma physics, atomic physics, nuclear structure and reactions research, biophysics and medical research. The lab is a member of the Helmholtz Association of German Research Centres. Shareholders are the German Federal Government (90%) and the State of Hesse, Thuringia and Rhineland-Palatinate. As a member of the Helmholtz Association, the current name was given to the facility on 7 October ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Armbruster
Peter Armbruster (born 25 July 1931) is a German physicist at the Gesellschaft für Schwerionenforschung (GSI) facility in Darmstadt, Germany, and is credited with co-discovering elements 107 ( bohrium), 108 (hassium), 109 (meitnerium), 110 (darmstadtium), 111 (roentgenium), and 112 (copernicium) with research partner Gottfried Münzenberg. Armbruster was born in Dachau, Bavaria. He studied physics at the Technical University of Stuttgart and Munich, and obtained his Ph.D. in 1961 under Heinz Maier-Leibnitz, Technical University of Munich. His major research fields are fission, interaction of heavy ions in matter and atomic physics with fission product beams at the Research Centre of Jülich (1965 to 1970). He was Senior Scientist at the Gesellschaft für Schwerionenforschung Darmstadt, GSI, from 1971 to 1996. From 1989 to 1992 he was research Director of the European Institut Laue-Langevin (ILL), Grenoble. Since 1996 he has been involved in a project on incineration of nucle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gottfried Münzenberg
Gottfried Münzenberg (born 17 March 1940) is a German physicist. He studied physics at Justus-Liebig-Universität in Giessen and Leopold-Franzens-Universität Innsbruck and completed his studies with a Ph.D. at the University of Giessen, Germany, in 1971. In 1976, he moved to the department of nuclear chemistry at GSI in Darmstadt, Germany, which was headed by Peter Armbruster. He played a leading role in the construction of SHIP, the 'Separator of Heavy Ion Reaction Products'. He was the driving force in the discovery of the cold heavy ion fusion and the discovery of the elements bohrium ('' Z'' = 107), hassium (''Z'' = 108), meitnerium (''Z'' = 109), darmstadtium (''Z'' = 110), roentgenium (''Z'' = 111), and copernicium (''Z'' = 112). In 1984, he became head of the new GSI project, the fragment separator, a project which opened new research topics, such as interactions of relativistic heavy ions with matter, p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Periodic Table
The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of chemistry. It is a graphic formulation of the periodic law, which states that the properties of the chemical elements exhibit an approximate periodic dependence on their atomic numbers. The table is divided into four roughly rectangular areas called blocks. The rows of the table are called periods, and the columns are called groups. Elements from the same group of the periodic table show similar chemical characteristics. Trends run through the periodic table, with nonmetallic character (keeping their own electrons) increasing from left to right across a period, and from down to up across a group, and metallic character (surrendering electrons to other atoms) increasing in the opposite direction. The underlying reason for these trends is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GSI Helmholtz Centre For Heavy Ion Research
The GSI Helmholtz Centre for Heavy Ion Research (german: GSI Helmholtzzentrum für Schwerionenforschung) is a federally and state co-funded heavy ion () research center in the Wixhausen suburb of Darmstadt, Germany. It was founded in 1969 as the Society for Heavy Ion Research (german: Gesellschaft für Schwerionenforschung), abbreviated GSI, to conduct research on and with heavy-ion accelerators. It is the only major user research center in the State of Hesse. The laboratory performs basic and applied research in physics and related natural science disciplines. Main fields of study include plasma physics, atomic physics, nuclear structure and reactions research, biophysics and medical research. The lab is a member of the Helmholtz Association of German Research Centres. Shareholders are the German Federal Government (90%) and the State of Hesse, Thuringia and Rhineland-Palatinate. As a member of the Helmholtz Association, the current name was given to the facility on 7 October ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synthetic Element
A synthetic element is one of 24 known chemical elements that do not occur naturally on Earth: they have been created by human manipulation of fundamental particles in a nuclear reactor, a particle accelerator, or the explosion of an atomic bomb; thus, they are called "synthetic", "artificial", or "man-made". The synthetic elements are those with atomic numbers 95–118, as shown in purple on the accompanying periodic table: these 24 elements were first created between 1944 and 2010. The mechanism for the creation of a synthetic element is to force additional protons into the nucleus of an element with an atomic number lower than 95. All synthetic elements are unstable, but they decay at widely varying rates: the half-lives of their longest-lived isotopes range from microseconds to millions of years. Five more elements that were created artificially are strictly speaking not ''synthetic'' because they were later found in nature in trace quantities: 43Tc, 61Pm, 85At, 93Np, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]