Radiation Health Effects Researchers
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, radiation is the emission or transmission of
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
in the form of
wave In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (res ...
s or
particle In the Outline of physical science, physical sciences, a particle (or corpuscule in older texts) is a small wikt:local, localized physical body, object which can be described by several physical property, physical or chemical property, chemical ...
s through space or through a material medium. This includes: * ''
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
'', such as
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
s,
microwaves Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency rang ...
,
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
,
visible light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
,
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nanometer, nm (with a corresponding frequency around 30 Hertz, PHz) to 400 nm (750 Hertz, THz), shorter than that of visible light, but longer than ...
,
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s, and gamma radiation (γ) * ''
particle radiation Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam. Due to the wave–par ...
'', such as alpha radiation (α), beta radiation (β), proton radiation and
neutron radiation Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then Neutron capture, react with Atomic nucleus, nuclei of other ...
(particles of non-zero rest energy) * '' acoustic radiation'', such as
ultrasound Ultrasound is sound waves with frequency, frequencies higher than the upper audible limit of human hearing range, hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hea ...
,
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the ...
, and
seismic wave A seismic wave is a wave of acoustic energy that travels through the Earth. It can result from an earthquake, volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic energy. S ...
s (dependent on a physical
transmission medium A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate ...
) * ''
gravitational radiation Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
'', that takes the form of gravitational waves, or ripples in the curvature of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
Radiation is often categorized as either ''
ionizing Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
'' or ''
non-ionizing Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum ( photon energy) to ionize atoms or molecules—that is, to completely remove an electron from an atom or mol ...
'' depending on the energy of the radiated particles. Ionizing radiation carries more than 10 eV, which is enough to
ionize Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
atoms and molecules and break
chemical bond A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of ...
s. This is an important distinction due to the large difference in harmfulness to living organisms. A common source of ionizing radiation is radioactive materials that emit α, β, or γ radiation, consisting of
helium nuclei Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s or
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
s, and
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s, respectively. Other sources include
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s from medical
radiography Radiography is an imaging technique using X-rays, gamma rays, or similar ionizing radiation and non-ionizing radiation to view the internal form of an object. Applications of radiography include medical radiography ("diagnostic" and "therapeut ...
examinations and
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
s,
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles ...
s, positrons,
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s and other particles that constitute the secondary
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s that are produced after primary cosmic rays interact with
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
. Gamma rays, X-rays and the higher energy range of ultraviolet light constitute the ionizing part of the
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from ...
. The word "ionize" refers to the breaking of one or more electrons away from an atom, an action that requires the relatively high energies that these electromagnetic waves supply. Further down the spectrum, the non-ionizing lower energies of the lower ultraviolet spectrum cannot ionize atoms, but can disrupt the inter-atomic bonds which form molecules, thereby breaking down molecules rather than atoms; a good example of this is sunburn caused by long-
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
solar ultraviolet. The waves of longer wavelength than UV in visible light, infrared and microwave frequencies cannot break bonds but can cause vibrations in the bonds which are sensed as
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is al ...
. Radio wavelengths and below generally are not regarded as harmful to biological systems. These are not sharp delineations of the energies; there is some overlap in the effects of specific
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
. The word "radiation" arises from the phenomenon of waves ''radiating'' (i.e., traveling outward in all directions) from a source. This aspect leads to a system of measurements and physical units that are applicable to all types of radiation. Because such radiation expands as it passes through space, and as its energy is conserved (in vacuum), the intensity of all types of radiation from a
point source A point source is a single identifiable ''localised'' source of something. A point source has negligible extent, distinguishing it from other source geometries. Sources are called point sources because in mathematical modeling, these sources can ...
follows an
inverse-square law In science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be understo ...
in relation to the distance from its source. Like any ideal law, the inverse-square law approximates a measured radiation intensity to the extent that the source approximates a geometric point.


Ionizing radiation

Radiation with sufficiently high energy can
ionize Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
atoms; that is to say it can knock
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s off atoms, creating ions. Ionization occurs when an electron is stripped (or "knocked out") from an electron shell of the atom, which leaves the atom with a net positive charge. Because living
cells Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery w ...
and, more importantly, the DNA in those cells can be damaged by this ionization, exposure to ionizing radiation increases the risk of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
. Thus "ionizing radiation" is somewhat artificially separated from particle radiation and electromagnetic radiation, simply due to its great potential for biological damage. While an individual cell is made of trillions of atoms, only a small fraction of those will be ionized at low to moderate radiation powers. The probability of ionizing radiation causing cancer is dependent upon the
absorbed dose Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmf ...
of the radiation, and is a function of the damaging tendency of the type of radiation (
equivalent dose Equivalent dose is a dose quantity '' H '' representing the stochastic health effects of low levels of ionizing radiation on the human body which represents the probability of radiation-induced cancer and genetic damage. It is derived from the ...
) and the sensitivity of the irradiated organism or tissue ( effective dose). If the source of the ionizing radiation is a radioactive material or a nuclear process such as fission or
fusion Fusion, or synthesis, is the process of combining two or more distinct entities into a new whole. Fusion may also refer to: Science and technology Physics *Nuclear fusion, multiple atomic nuclei combining to form one or more different atomic nucl ...
, there is
particle radiation Particle radiation is the radiation of energy by means of fast-moving subatomic particles. Particle radiation is referred to as a particle beam if the particles are all moving in the same direction, similar to a light beam. Due to the wave–par ...
to consider. Particle radiation is
subatomic particles In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a prot ...
accelerated to
relativistic speed Relativistic speed refers to speed at which relativistic effects become significant to the desired accuracy of measurement of the phenomenon being observed. Relativistic effects are those discrepancies between values calculated by models consideri ...
s by nuclear reactions. Because of their momenta they are quite capable of knocking out electrons and ionizing materials, but since most have an electrical charge, they don't have the penetrating power of ionizing radiation. The exception is neutron particles; see below. There are several different kinds of these particles, but the majority are
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
s,
beta particle A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β ...
s,
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s, and
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s. Roughly speaking, photons and particles with energies above about 10
electron volt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. ...
s (eV) are ionizing (some authorities use 33 eV, the ionization energy for water). Particle radiation from radioactive material or cosmic rays almost invariably carries enough energy to be ionizing. Most ionizing radiation originates from radioactive materials and space (cosmic rays), and as such is naturally present in the environment, since most rocks and soil have small concentrations of radioactive materials. Since this radiation is invisible and not directly detectable by human senses, instruments such as
Geiger counter A Geiger counter (also known as a Geiger–Müller counter) is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental ph ...
s are usually required to detect its presence. In some cases, it may lead to secondary emission of visible light upon its interaction with matter, as in the case of Cherenkov radiation and radio-luminescence. Ionizing radiation has many practical uses in medicine, research, and construction, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue; high doses result in Acute radiation syndrome (ARS), with skin burns, hair loss, internal organ failure, and death, while any dose may result in an increased chance of cancer and
genetic damage In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitos ...
; a particular form of cancer,
thyroid cancer Thyroid cancer is cancer that develops from the tissues of the thyroid gland. It is a disease in which cells grow abnormally and have the potential to spread to other parts of the body. Symptoms can include swelling or a lump in the neck. C ...
, often occurs when nuclear weapons and reactors are the radiation source because of the biological proclivities of the radioactive iodine fission product,
iodine-131 Iodine-131 (131I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. It has a radioactive decay half-life of about eight days. It is associated with nuc ...
. However, calculating the exact risk and chance of cancer forming in cells caused by ionizing radiation is still not well understood and currently estimates are loosely determined by population based data from the
atomic bombings of Hiroshima and Nagasaki The United States detonated two atomic bombs over the Japanese cities of Hiroshima and Nagasaki on 6 and 9 August 1945, respectively. The two bombings killed between 129,000 and 226,000 people, most of whom were civilians, and remain the onl ...
and from follow-up of reactor accidents, such as the
Chernobyl disaster The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian SSR in the Soviet Union. It is one of only two nuc ...
. The
International Commission on Radiological Protection The International Commission on Radiological Protection (ICRP) is an independent, international, non-governmental organization, with the mission to protect people, animals, and the environment from the harmful effects of ionising radiation. Its r ...
states that "The Commission is aware of uncertainties and lack of precision of the models and parameter values", "Collective effective dose is not intended as a tool for epidemiological risk assessment, and it is inappropriate to use it in risk projections" and "in particular, the calculation of the number of cancer deaths based on collective effective doses from trivial individual doses should be avoided."


Ultraviolet radiation

Ultraviolet, of wavelengths from 10 nm to 125 nm, ionizes air molecules, causing it to be strongly absorbed by air and by ozone (O3) in particular. Ionizing UV therefore does not penetrate Earth's atmosphere to a significant degree, and is sometimes referred to as
vacuum ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation i ...
. Although present in space, this part of the UVA spectrum is not of biological importance, because it does not reach living organisms on Earth. There is a zone of the atmosphere in which ozone absorbs some 98% of non-ionizing but dangerous UV-C and UV-B. This so-called
ozone layer The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation. It contains a high concentration of ozone (O3) in relation to other parts of the atmosphere, although still small in rela ...
starts at about and extends upward. Some of the ultraviolet spectrum that does reach the ground is non-ionizing, but is still biologically hazardous due to the ability of single photons of this energy to cause electronic excitation in biological molecules, and thus damage them by means of unwanted reactions. An example is the formation of
pyrimidine dimer Pyrimidine dimers are molecular lesions formed from thymine or cytosine bases in DNA via photochemical reactions, commonly associated with direct DNA damage. Ultraviolet light (UV; particularly UVB) induces the formation of covalent linkages betwe ...
s in DNA, which begins at wavelengths below 365 nm (3.4 eV), which is well below ionization energy. This property gives the ultraviolet spectrum some of the dangers of ionizing radiation in biological systems without actual ionization occurring. In contrast, visible light and longer-wavelength electromagnetic radiation, such as infrared, microwaves, and radio waves, consists of photons with too little energy to cause damaging molecular excitation, and thus this radiation is far less hazardous per unit of energy.


X-rays

X-rays are electromagnetic waves with a wavelength less than about 10−9 m (greater than 3x1017 Hz and 1,240 eV). A smaller wavelength corresponds to a higher energy according to the equation E= h c/ λ. ("E" is Energy; "h" is Planck's constant; "c" is the speed of light; "λ" is wavelength.) When an X-ray photon collides with an atom, the atom may absorb the energy of the photon and boost an electron to a higher orbital level or if the photon is extremely energetic, it may knock an electron from the atom altogether, causing the atom to ionize. Generally, larger atoms are more likely to absorb an X-ray photon since they have greater energy differences between orbital electrons. The soft tissue in the human body is composed of smaller atoms than the calcium atoms that make up bone, so there is a contrast in the absorption of X-rays. X-ray machines are specifically designed to take advantage of the absorption difference between bone and soft tissue, allowing physicians to examine structure in the human body. X-rays are also totally absorbed by the thickness of the earth's atmosphere, resulting in the prevention of the X-ray output of the sun, smaller in quantity than that of UV but nonetheless powerful, from reaching the surface.


Gamma radiation

Gamma (γ) radiation consists of photons with a wavelength less than 3x10−11 meters (greater than 1019 Hz and 41.4 keV). Gamma radiation emission is a nuclear process that occurs to rid an unstable
nucleus Nucleus ( : nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucle ...
of excess energy after most nuclear reactions. Both alpha and beta particles have an electric charge and mass, and thus are quite likely to interact with other atoms in their path. Gamma radiation, however, is composed of photons, which have neither mass nor electric charge and, as a result, penetrates much further through matter than either alpha or beta radiation. Gamma rays can be stopped by a sufficiently thick or dense layer of material, where the stopping power of the material per given area depends mostly (but not entirely) on the total mass along the path of the radiation, regardless of whether the material is of high or low density. However, as is the case with X-rays, materials with a high atomic number such as lead or
depleted uranium Depleted uranium (DU; also referred to in the past as Q-metal, depletalloy or D-38) is uranium with a lower content of the fissile isotope than natural uranium.: "Depleted uranium possesses only 60% of the radioactivity of natural uranium, hav ...
add a modest (typically 20% to 30%) amount of stopping power over an equal mass of less dense and lower atomic weight materials (such as water or concrete). The atmosphere absorbs all gamma rays approaching Earth from space. Even air is capable of absorbing gamma rays, halving the energy of such waves by passing through, on the average, .


Alpha radiation

Alpha particles are
helium-4 Helium-4 () is a stable isotope of the element helium. It is by far the more abundant of the two naturally occurring isotopes of helium, making up about 99.99986% of the helium on Earth. Its nucleus is identical to an alpha particle, and consis ...
nuclei (two protons and two neutrons). They interact with matter strongly due to their charges and combined mass, and at their usual velocities only penetrate a few centimeters of air, or a few millimeters of low density material (such as the thin mica material which is specially placed in some Geiger counter tubes to allow alpha particles in). This means that alpha particles from ordinary
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atom ...
do not penetrate the outer layers of dead skin cells and cause no damage to the live tissues below. Some very high energy alpha particles compose about 10% of
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s, and these are capable of penetrating the body and even thin metal plates. However, they are of danger only to astronauts, since they are deflected by the Earth's magnetic field and then stopped by its atmosphere. Alpha radiation is dangerous when alpha-emitting
radioisotopes A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
are ingested or inhaled (breathed or swallowed). This brings the radioisotope close enough to sensitive live tissue for the alpha radiation to damage cells. Per unit of energy, alpha particles are at least 20 times more effective at cell-damage as gamma rays and X-rays. See
relative biological effectiveness In radiobiology, the relative biological effectiveness (often abbreviated as RBE) is the ratio of biological effectiveness of one type of ionizing radiation relative to another, given the same absorbed dose, amount of absorbed energy. The RBE i ...
for a discussion of this. Examples of highly poisonous alpha-emitters are all isotopes of
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather t ...
,
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
, and
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
, due to the amount of decay that occur in these short half-life materials.


Beta radiation

Beta-minus (β) radiation consists of an energetic electron. It is more penetrating than alpha radiation but less than gamma. Beta radiation from
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
can be stopped with a few centimeters of plastic or a few millimeters of metal. It occurs when a neutron decays into a proton in a nucleus, releasing the beta particle and an
antineutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
. Beta radiation from
linac A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beam ...
accelerators is far more energetic and penetrating than natural beta radiation. It is sometimes used therapeutically in
radiotherapy Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a therapy using ionizing radiation, generally provided as part of cancer treatment to control or kill malignant cells and normally delivered by a linear accelerator. Radia ...
to treat superficial tumors. Beta-plus (β+) radiation is the emission of
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
s, which are the
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
form of electrons. When a positron slows to speeds similar to those of electrons in the material, the positron will annihilate an electron, releasing two gamma photons of 511 keV in the process. Those two gamma photons will be traveling in (approximately) opposite direction. The gamma radiation from positron annihilation consists of high energy photons, and is also ionizing.


Neutron radiation

Neutrons are categorized according to their speed/energy. Neutron radiation consists of
free neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons behave ...
s. These neutrons may be emitted during either spontaneous or induced nuclear fission. Neutrons are rare radiation particles; they are produced in large numbers only where
chain reaction A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. In a chain reaction, positive feedback leads to a self-amplifying chain of events. Chain reactions are one way that syst ...
fission or fusion reactions are active; this happens for about 10 microseconds in a thermonuclear explosion, or continuously inside an operating nuclear reactor; production of the neutrons stops almost immediately in the reactor when it goes non-critical. Neutrons can make other objects, or material, radioactive. This process, called
neutron activation Neutron activation is the process in which neutron radiation induces radioactivity in materials, and occurs when atomic nuclei capture free neutrons, becoming heavier and entering excited states. The excited nucleus decays immediately by emittin ...
, is the primary method used to produce radioactive sources for use in medical, academic, and industrial applications. Even comparatively low speed
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s cause neutron activation (in fact, they cause it more efficiently). Neutrons do not ionize atoms in the same way that charged particles such as protons and electrons do (by the excitation of an electron), because neutrons have no charge. It is through their absorption by nuclei which then become unstable that they cause ionization. Hence, neutrons are said to be "indirectly ionizing." Even neutrons without significant kinetic energy are indirectly ionizing, and are thus a significant radiation hazard. Not all materials are capable of neutron activation; in water, for example, the most common isotopes of both types atoms present (hydrogen and oxygen) capture neutrons and become heavier but remain stable forms of those atoms. Only the absorption of more than one neutron, a statistically rare occurrence, can activate a hydrogen atom, while oxygen requires two additional absorptions. Thus water is only very weakly capable of activation. The sodium in salt (as in sea water), on the other hand, need only absorb a single neutron to become Na-24, a very intense source of beta decay, with half-life of 15 hours. In addition, high-energy (high-speed) neutrons have the ability to directly ionize atoms. One mechanism by which high energy neutrons ionize atoms is to strike the nucleus of an atom and knock the atom out of a molecule, leaving one or more electrons behind as the
chemical bond A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing of ...
is broken. This leads to production of chemical
free radical A daughter category of ''Ageing'', this category deals only with the biological aspects of ageing. Ageing Ailments of unknown cause Biogerontology Biological processes Causes of death Cellular processes Gerontology Life extension Metabo ...
s. In addition, very high energy neutrons can cause ionizing radiation by "neutron spallation" or knockout, wherein neutrons cause emission of high-energy protons from atomic nuclei (especially hydrogen nuclei) on impact. The last process imparts most of the neutron's energy to the proton, much like one
billiard ball A billiard ball is a small, hard ball used in cue sports, such as carom billiards, pool, and snooker. The number, type, diameter, color, and pattern of the balls differ depending upon the specific game being played. Various particular ball p ...
striking another. The charged protons and other products from such reactions are directly ionizing. High-energy neutrons are very penetrating and can travel great distances in air (hundreds or even thousands of meters) and moderate distances (several meters) in common solids. They typically require hydrogen rich shielding, such as concrete or water, to block them within distances of less than a meter. A common source of neutron radiation occurs inside a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
, where a meters-thick water layer is used as effective shielding.


Cosmic radiation

There are two sources of high energy particles entering the Earth's atmosphere from outer space: the sun and deep space. The sun continuously emits particles, primarily free protons, in the solar wind, and occasionally augments the flow hugely with
coronal mass ejection A coronal mass ejection (CME) is a significant release of plasma and accompanying magnetic field from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted ...
s (CME). The particles from deep space (inter- and extra-galactic) are much less frequent, but of much higher energies. These particles are also mostly protons, with much of the remainder consisting of helions (alpha particles). A few completely ionized nuclei of heavier elements are present. The origin of these galactic cosmic rays is not yet well understood, but they seem to be remnants of
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e and especially
gamma-ray burst In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten milli ...
s (GRB), which feature magnetic fields capable of the huge accelerations measured from these particles. They may also be generated by
quasar A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a m ...
s, which are galaxy-wide jet phenomena similar to GRBs but known for their much larger size, and which seem to be a violent part of the universe's early history.


Non-ionizing radiation

The kinetic energy of particles of non-ionizing radiation is too small to produce charged ions when passing through matter. For non-ionizing electromagnetic radiation (see types below), the associated particles (photons) have only sufficient energy to change the rotational, vibrational or electronic valence configurations of molecules and atoms. The effect of non-ionizing forms of radiation on living tissue has only recently been studied. Nevertheless, different biological effects are observed for different types of non-ionizing radiation. Even "non-ionizing" radiation is capable of causing thermal-ionization if it deposits enough heat to raise temperatures to ionization energies. These reactions occur at far higher energies than with ionization radiation, which requires only single particles to cause ionization. A familiar example of thermal ionization is the flame-ionization of a common fire, and the browning reactions in common food items induced by infrared radiation, during broiling-type cooking. The
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from ...
is the range of all possible electromagnetic radiation frequencies. The electromagnetic spectrum (usually just spectrum) of an object is the characteristic distribution of electromagnetic radiation emitted by, or absorbed by, that particular object. The non-ionizing portion of electromagnetic radiation consists of electromagnetic waves that (as individual quanta or particles, see
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
) are not energetic enough to detach electrons from atoms or molecules and hence cause their ionization. These include radio waves, microwaves, infrared, and (sometimes) visible light. The lower frequencies of ultraviolet light may cause chemical changes and molecular damage similar to ionization, but is technically not ionizing. The highest frequencies of ultraviolet light, as well as all X-rays and gamma-rays are ionizing. The occurrence of ionization depends on the energy of the individual particles or waves, and not on their number. An intense flood of particles or waves will not cause ionization if these particles or waves do not carry enough energy to be ionizing, unless they raise the temperature of a body to a point high enough to ionize small fractions of atoms or molecules by the process of thermal-ionization (this, however, requires relatively extreme radiation intensities).


Ultraviolet light

As noted above, the lower part of the spectrum of ultraviolet, called soft UV, from 3 eV to about 10 eV, is non-ionizing. However, the effects of non-ionizing ultraviolet on chemistry and the damage to biological systems exposed to it (including oxidation, mutation, and cancer) are such that even this part of ultraviolet is often compared with ionizing radiation.


Visible light

Light, or visible light, is a very narrow range of electromagnetic radiation of a wavelength that is visible to the human eye, or 380–750 nm which equates to a frequency range of 790 to 400 THz respectively. More broadly, physicists use the term "light" to mean electromagnetic radiation of all wavelengths, whether visible or not.


Infrared

Infrared (IR) light is electromagnetic radiation with a wavelength between 0.7 and 300 micrometers, which corresponds to a frequency range between 430 and 1 THz respectively. IR wavelengths are longer than that of visible light, but shorter than that of microwaves. Infrared may be detected at a distance from the radiating objects by "feel." Infrared sensing snakes can detect and focus infrared by use of a pinhole lens in their heads, called "pits". Bright sunlight provides an irradiance of just over 1 kilowatt per square meter at sea level. Of this energy, 53% is infrared radiation, 44% is visible light, and 3% is ultraviolet radiation.


Microwave

Microwaves are electromagnetic waves with wavelengths ranging from as short as one millimeter to as long as one meter, which equates to a frequency range of 300 MHz to 300 GHz. This broad definition includes both UHF and EHF (millimeter waves), but various sources use different other limits. In all cases, microwaves include the entire super high frequency band (3 to 30 GHz, or 10 to 1 cm) at minimum, with RF engineering often putting the lower boundary at 1 GHz (30 cm), and the upper around 100 GHz (3mm).


Radio waves

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Like all other electromagnetic waves, they travel at the speed of light. Naturally occurring radio waves are made by lightning, or by certain astronomical objects. Artificially generated radio waves are used for fixed and mobile radio communication, broadcasting, radar and other navigation systems, satellite communication, computer networks and innumerable other applications. In addition, almost any wire carrying alternating current will radiate some of the energy away as radio waves; these are mostly termed interference. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves may bend at the rate of the curvature of the Earth and may cover a part of the Earth very consistently, shorter waves travel around the world by multiple reflections off the ionosphere and the Earth. Much shorter wavelengths bend or reflect very little and travel along the line of sight.


Very low frequency

Very low frequency (VLF) refers to a frequency range of 30 Hz to 3 kHz which corresponds to wavelengths of 100,000 to 10,000 meters respectively. Since there is not much bandwidth in this range of the radio spectrum, only the very simplest signals can be transmitted, such as for radio navigation. Also known as the
myriameter The following are examples of orders of magnitude for different lengths. __TOC__ Overview Detailed list To help compare different orders of magnitude, the following list describes various lengths between 1.6 \times 10^ metres and 10^ ...
band or myriameter wave as the wavelengths range from ten to one myriameter (an obsolete metric unit equal to 10 kilometers).


Extremely low frequency

Extremely low frequency (ELF) is radiation frequencies from 3 to 30 Hz (108 to 107 meters respectively). In atmosphere science, an alternative definition is usually given, from 3 Hz to 3 kHz. In the related magnetosphere science, the lower frequency electromagnetic oscillations (pulsations occurring below ~3 Hz) are considered to lie in the ULF range, which is thus also defined differently from the ITU Radio Bands. A massive military ELF antenna in Michigan radiates very slow messages to otherwise unreachable receivers, such as submerged submarines.


Thermal radiation (heat)

Thermal radiation is a common synonym for infrared radiation emitted by objects at temperatures often encountered on Earth. Thermal radiation refers not only to the radiation itself, but also the process by which the surface of an object radiates its
thermal energy The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, d ...
in the form of black body radiation. Infrared or red radiation from a common household radiator or electric heater is an example of thermal radiation, as is the heat emitted by an operating incandescent light bulb. Thermal radiation is generated when energy from the movement of charged particles within atoms is converted to electromagnetic radiation. As noted above, even low-frequency thermal radiation may cause temperature-ionization whenever it deposits sufficient thermal energy to raise temperatures to a high enough level. Common examples of this are the ionization (plasma) seen in common flames, and the molecular changes caused by the " browning" during food-cooking, which is a chemical process that begins with a large component of ionization.


Black-body radiation

''
Black-body A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
radiation'' is an idealized spectrum of radiation emitted by a body that is at a uniform temperature. The shape of the spectrum and the total amount of energy emitted by the body is a function of the absolute temperature of that body. The radiation emitted covers the entire electromagnetic spectrum and the intensity of the radiation (power/unit-area) at a given frequency is described by
Planck's law In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature , when there is no net flow of matter or energy between the body and its environment. At ...
of radiation. For a given temperature of a black-body there is a particular frequency at which the radiation emitted is at its maximum intensity. That maximum radiation frequency moves toward higher frequencies as the temperature of the body increases. The frequency at which the black-body radiation is at maximum is given by
Wien's displacement law Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck r ...
and is a function of the body's absolute temperature. A black-body is one that emits at any temperature the maximum possible amount of radiation at any given wavelength. A black-body will also absorb the maximum possible incident radiation at any given wavelength. A black-body with a temperature at or below room temperature would thus appear absolutely black, as it would not reflect any incident light nor would it emit enough radiation at visible wavelengths for our eyes to detect. Theoretically, a black-body emits electromagnetic radiation over the entire spectrum from very low frequency radio waves to x-rays, creating a continuum of radiation. The color of a radiating black-body tells the temperature of its radiating surface. It is responsible for the color of
stars A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth ma ...
, which vary from infrared through red (2,500K), to yellow (5,800K), to white and to blue-white (15,000K) as the peak radiance passes through those points in the visible spectrum. When the peak is below the visible spectrum the body is black, while when it is above the body is blue-white, since all the visible colors are represented from blue decreasing to red.


Discovery

Electromagnetic radiation of wavelengths other than visible light were discovered in the early 19th century. The discovery of infrared radiation is ascribed to
William Herschel Frederick William Herschel (; german: Friedrich Wilhelm Herschel; 15 November 1738 – 25 August 1822) was a German-born British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline H ...
, the
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, natural satellite, moons, comets and galaxy, g ...
. Herschel published his results in 1800 before the
Royal Society of London The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
. Herschel, like Ritter, used a
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
to
refract In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomeno ...
light from the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
and detected the infrared (beyond the
red Red is the color at the long wavelength end of the visible spectrum of light, next to orange and opposite violet. It has a dominant wavelength of approximately 625–740 nanometres. It is a primary color in the RGB color model and a secondar ...
part of the spectrum), through an increase in the temperature recorded by a
thermometer A thermometer is a device that temperature measurement, measures temperature or a temperature gradient (the degree of hotness or coldness of an object). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a merc ...
. In 1801, the German physicist
Johann Wilhelm Ritter Johann Wilhelm Ritter (16 December 1776 – 23 January 1810). was a German chemist, physicist and philosopher. He was born in Samitz (Zamienice) near Haynau (Chojnów) in Silesia (then part of Prussia, since 1945 in Poland), and died in Munic ...
made the discovery of ultraviolet by noting that the rays from a prism darkened
silver chloride Silver chloride is a chemical compound with the chemical formula Ag Cl. This white crystalline solid is well known for its low solubility in water (this behavior being reminiscent of the chlorides of Tl+ and Pb2+). Upon illumination or heating, ...
preparations more quickly than violet light. Ritter's experiments were an early precursor to what would become photography. Ritter noted that the UV rays were capable of causing chemical reactions. The first radio waves detected were not from a natural source, but were produced deliberately and artificially by the German scientist
Heinrich Hertz Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's Maxwell's equations, equations of electrom ...
in 1887, using electrical circuits calculated to produce oscillations in the radio frequency range, following formulas suggested by the equations of
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
.
Wilhelm Röntgen Wilhelm Conrad Röntgen (; ; 27 March 184510 February 1923) was a German mechanical engineer and physicist, who, on 8 November 1895, produced and detected electromagnetic radiation in a wavelength range known as X-rays or Röntgen rays, an achiev ...
discovered and named
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 Picometre, picometers to 10 Nanometre, nanometers, corresponding to frequency, ...
. While experimenting with high voltages applied to an evacuated tube on 8 November 1895, he noticed a fluorescence on a nearby plate of coated glass. Within a month, he discovered the main properties of X-rays that we understand to this day. In 1896,
Henri Becquerel Antoine Henri Becquerel (; 15 December 1852 – 25 August 1908) was a French engineer, physicist, Nobel laureate, and the first person to discover evidence of radioactivity. For work in this field he, along with Marie Skłodowska-Curie and P ...
found that rays emanating from certain minerals penetrated black paper and caused fogging of an unexposed photographic plate. His doctoral student
Marie Curie Marie Salomea Skłodowska–Curie ( , , ; born Maria Salomea Skłodowska, ; 7 November 1867 – 4 July 1934) was a Polish and naturalized-French physicist and chemist who conducted pioneering research on radioactivity. She was the first ...
discovered that only certain chemical elements gave off these rays of energy. She named this behavior radioactivity. Alpha rays (alpha particles) and beta rays (
beta particle A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β ...
s) were differentiated by
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
through simple experimentation in 1899. Rutherford used a generic pitchblende radioactive source and determined that the rays produced by the source had differing penetrations in materials. One type had short penetration (it was stopped by paper) and a positive charge, which Rutherford named ''alpha rays.'' The other was more penetrating (able to expose film through paper but not metal) and had a negative charge, and this type Rutherford named ''beta.'' This was the radiation that had been first detected by Becquerel from uranium salts. In 1900, the French scientist
Paul Villard Paul Ulrich Villard (28 September 1860 – 13 January 1934) was a French chemist and physicist. He discovered gamma rays in 1900 while studying the radiation emanating from radium. Early research Villard was born in Saint-Germain-au-Mon ...
discovered a third neutrally charged and especially penetrating type of radiation from radium, and after he described it, Rutherford realized it must be yet a third type of radiation, which in 1903 Rutherford named
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s. Henri Becquerel himself proved that beta rays are fast electrons, while Rutherford and
Thomas Royds Thomas Royds (April 11, 1884 – May 1, 1955) was a British solar physicist who worked with Ernest Rutherford on the identification of alpha radiation as the nucleus of the helium atom, and who was Director of the Kodaikanal Solar Observatory, I ...
proved in 1909 that alpha particles are ionized helium. Rutherford and
Edward Andrade Edward Neville da Costa Andrade FRS (27 December 1887 – 6 June 1971) was an English physicist, writer, and poet. He told ''The Literary Digest'' his name was pronounced "as written, i.e., like ''air raid'', with ''and'' substituted for ''air' ...
proved in 1914 that gamma rays are like X-rays, but with shorter wavelengths. Cosmic ray radiations striking the Earth from outer space were finally definitively recognized and proven to exist in 1912, as the scientist
Victor Hess Victor Franz Hess (; 24 June 188317 December 1964) was an Austrian-American physicist, and Nobel laureate in physics, who discovered cosmic rays. Biography He was born to Vinzenz Hess and Serafine Edle von Grossbauer-Waldstätt, in Waldstein ...
carried an
electrometer An electrometer is an electrical instrument for measuring electric charge or electrical potential difference. There are many different types, ranging from historical handmade mechanical instruments to high-precision electronic devices. Modern e ...
to various altitudes in a free balloon flight. The nature of these radiations was only gradually understood in later years. The
Neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
and
neutron radiation Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then Neutron capture, react with Atomic nucleus, nuclei of other ...
were discovered by
James Chadwick Sir James Chadwick, (20 October 1891 – 24 July 1974) was an English physicist who was awarded the 1935 Nobel Prize in Physics for his discovery of the neutron in 1932. In 1941, he wrote the final draft of the MAUD Report, which inspi ...
in 1932. A number of other high energy particulate radiations such as
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
s,
muon A muon ( ; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with an electric charge of −1 '' e'' and a spin of , but with a much greater mass. It is classified as a lepton. As wi ...
s, and
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s were discovered by cloud chamber examination of cosmic ray reactions shortly thereafter, and others types of particle radiation were produced artificially in
particle accelerators A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
, through the last half of the twentieth century.


Applications


Medicine

Radiation and radioactive substances are used for diagnosis, treatment, and research. X-rays, for example, pass through muscles and other soft tissue but are stopped by dense materials. This property of X-rays enables doctors to find broken bones and to locate cancers that might be growing in the body. Doctors also find certain diseases by injecting a radioactive substance and monitoring the radiation given off as the substance moves through the body. Radiation used for cancer treatment is called ionizing radiation because it forms ions in the cells of the tissues it passes through as it dislodges electrons from atoms. This can kill cells or change genes so the cells cannot grow. Other forms of radiation such as radio waves, microwaves, and light waves are called non-ionizing. They don't have as much energy so they are not able to ionize cells.


Communication

All modern communication systems use forms of electromagnetic radiation. Variations in the intensity of the radiation represent changes in the sound, pictures, or other information being transmitted. For example, a human voice can be sent as a radio wave or microwave by making the wave vary to corresponding variations in the voice. Musicians have also experimented with gamma rays sonification, or using nuclear radiation, to produce sound and music.


Science

Researchers use radioactive atoms to determine the age of materials that were once part of a living organism. The age of such materials can be estimated by measuring the amount of radioactive carbon they contain in a process called
radiocarbon dating Radiocarbon dating (also referred to as carbon dating or carbon-14 dating) is a method for determining the age of an object containing organic material by using the properties of radiocarbon, a radioactive isotope of carbon. The method was dev ...
. Similarly, using other radioactive elements, the age of rocks and other geological features (even some man-made objects) can be determined; this is called
Radiometric dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares t ...
. Environmental scientists use radioactive atoms, known as tracer atoms, to identify the pathways taken by pollutants through the environment. Radiation is used to determine the composition of materials in a process called
neutron activation analysis Neutron activation analysis (NAA) is the nuclear process used for determining the concentrations of elements in many materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on atomic ...
. In this process, scientists bombard a sample of a substance with particles called neutrons. Some of the atoms in the sample absorb neutrons and become radioactive. The scientists can identify the elements in the sample by studying the emitted radiation.


Possible damage to health and environment from certain types of radiation

Radiation is not always dangerous, and not all types of radiation are equally dangerous, contrary to several common medical myths. For example, although
bananas A banana is an elongated, edible fruit – botanically a berry – produced by several kinds of large herbaceous flowering plants in the genus ''Musa''. In some countries, bananas used for cooking may be called "plantains", distinguis ...
contain naturally occurring
radioactive isotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s, particularly
potassium-40 Potassium-40 (40K) is a radioactive isotope of potassium which has a long half-life of 1.25 billion years. It makes up about 0.012% (120 ppm) of the total amount of potassium found in nature. Potassium-40 undergoes three types of radioactive de ...
(40K), which emit ionizing radiation when undergoing radioactive decay, the levels of such radiation are far too low to induce radiation poisoning, and bananas are not a radiation hazard. It would not be physically possible to eat enough bananas to cause radiation poisoning, as the radiation dose from bananas is non-cumulative.U. S. Environmental Protection Agency (1999)
Federal Guidance Report 13
page 16: "For example, the ingestion coefficient risk for 40K would not be appropriate for an application to ingestion of 40K in conjunction with an elevated intake of natural potassium. This is because the biokinetic model for potassium used in this document represents the relatively slow removal of potassium (biological half-time 30 days) that is estimated to occur for typical intakes of potassium, whereas an elevated intake of potassium would result in excretion of a nearly equal mass of natural potassium, and hence of 40K, over a short period."
Radiation is ubiquitous on Earth, and humans are adapted to survive at the normal low-to-moderate levels of radiation found on Earth's surface. The relationship between dose and toxicity is often non-linear, and many substances that are toxic at very high doses actually have neutral or positive health effects, or are biologically essential, at moderate or low doses. There is some evidence to suggest that this is true for ionizing radiation: normal levels of ionizing radiation may serve to stimulate and regulate the activity of DNA repair mechanisms. High enough levels of any kind of radiation will eventually become lethal, however.Nancy Trautmann: The Dose Makes the Poison--Or Does It?
Bioscience 2005, American Institute of Biological Sciences
Ionizing radiation in certain conditions can damage living organisms, causing cancer or genetic damage. Non-ionizing radiation in certain conditions also can cause damage to living organisms, such as
burn A burn is an injury to skin, or other tissues, caused by heat, cold, electricity, chemicals, friction, or ultraviolet radiation (like sunburn). Most burns are due to heat from hot liquids (called scalding), solids, or fire. Burns occur mainl ...
s. In 2011, the
International Agency for Research on Cancer The International Agency for Research on Cancer (IARC; french: Centre International de Recherche sur le Cancer, CIRC) is an intergovernmental agency forming part of the World Health Organization of the United Nations. Its role is to conduct and ...
(IARC) of the
World Health Organization The World Health Organization (WHO) is a specialized agency of the United Nations responsible for international public health. The WHO Constitution states its main objective as "the attainment by all peoples of the highest possible level of h ...
(WHO) released a statement adding radio frequency electromagnetic fields (including microwave and millimeter waves) to their list of things which are possibly carcinogenic to humans. RWTH Aachen University's EMF-Portal web site presents one of the biggest database about the effects of
Electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
. As of 12 July 2019 it has 28,547 publications and 6,369 summaries of individual scientific studies on the effects of electromagnetic fields.


See also

* Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) *
Background radiation Background radiation is a measure of the level of ionizing radiation present in the environment at a particular location which is not due to deliberate introduction of radiation sources. Background radiation originates from a variety of sources ...
, which actually refers to background ionizing radiation * Cherenkov radiation *
Cosmic microwave background radiation In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
, 3 K
blackbody radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
that fills the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. Acc ...
*
Electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from ...
* FASTRAD *
Hawking radiation Hawking radiation is theoretical black body radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical arg ...
*
Ionizing radiation Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
*
Non-ionizing radiation Non-ionizing (or non-ionising) radiation refers to any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy) to ionize atoms or molecules—that is, to completely remove an electron from an atom or molec ...
*
Radiant energy Radiant may refer to: Computers, software, and video games * Radiant (software), a content management system * GtkRadiant, a level editor created by id Software for their games * Radiant AI, a technology developed by Bethesda Softworks for ''The ...
, radiation by a source into the surrounding environment. *
Radiation damage Radiation damage is the effect of ionizing radiation on physical objects including non-living structural materials. It can be either detrimental or beneficial for materials. Radiobiology is the study of the action of ionizing radiation on living ...
– adverse effects of ionizing radiation on materials and devices *
Radiation hardening Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation (particle radiation and high-energy electromagnetic radiation), especially for environ ...
– making electronics resistant to failure in high ionizing radiation environments *
Radiation hormesis Radiation hormesis is the hypothesis that low doses of ionizing radiation (within the region of and just above natural background levels) are beneficial, stimulating the activation of repair mechanisms that protect against disease, that are not ...
– ionizing radiation dosage threshold damage theory * Radiation poisoning – adverse effects of ionizing radiation on life forms * Radiation properties *
Radiation Protection Convention, 1960 Radiation Protection Convention, 1960 is an International Labour Organization Convention to restrict workers from exposure of ionising radiation and to prohibit persons under 16 engaging in work that causes such exposure. (Article 6) It was est ...
– by
International Labour Organization The International Labour Organization (ILO) is a United Nations agency whose mandate is to advance social and economic justice by setting international labour standards. Founded in October 1919 under the League of Nations, it is the first and o ...
*
Radioactive contamination Radioactive contamination, also called radiological pollution, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids, or gases (including the human body), where their presence is unintended or undesirab ...
*
Radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...


Notes and references


External links

*
Health Physics Society Public Education Website
from World Health Organization * ttps://www.bbc.com/news/health-12722435 Q&A: Health effects of radiation exposure ''BBC News'', 21 July 2011. * {{Authority control Physical phenomena