HOME

TheInfoList



OR:

RIG-like receptors (retinoic acid-inducible gene-I-like receptors, RLRs) are a type of
intracellular This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions ...
pattern recognition receptor Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed, mainly, by cells of ...
involved in the recognition of
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsk ...
es by the
innate immune system The innate, or nonspecific, immune system is one of the two main immunity strategies (the other being the adaptive immune system) in vertebrates. The innate immune system is an older evolutionary defense strategy, relatively speaking, and is the ...
. RIG-I (retinoic-acid inducible gene or DDX58) is the best characterized receptor within the RIG-I like receptor (RLR) family. Together with
MDA5 MDA5 (melanoma differentiation-associated protein 5) is a RIG-I-like receptor dsRNA helicase enzyme that is encoded by the ''IFIH1'' gene in humans. MDA5 is part of the RIG-I-like receptor (RLR) family, which also includes RIG-I and LGP2, and ...
(melanoma differentiation-associated 5) and
LGP2 Probable ATP-dependent RNA helicase DHX58 also known as RIG-I-like receptor 3 (RLR-3) or RIG-I-like receptor LGP2 (RLR) is a RIG-I-like receptor dsRNA helicase enzyme that in humans is encoded by the ''DHX58'' gene. The protein encoded by the ge ...
(laboratory of genetics and physiology 2), this family of cytoplasmic pattern recognition receptors (PRRs) are sentinels for intracellular viral RNA that is a product of viral infection. The RLR receptors provide frontline defence against viral infections in most tissues.


RLR ligands

The RIG-I receptor prefers to bind short (<2000 bp) single- or double-stranded RNA carrying an uncapped 5’ triphosphate and additional motifs such as poly-uridine rich RNA motifs. RIG-I triggers an immune response to RNA viruses from various families including the paramyxoviruses (e.g. measles), rhabdoviruses (e.g. vesicular stomatitis virus) and orthomyxoviruses (e.g. influenza A).
MDA5 MDA5 (melanoma differentiation-associated protein 5) is a RIG-I-like receptor dsRNA helicase enzyme that is encoded by the ''IFIH1'' gene in humans. MDA5 is part of the RIG-I-like receptor (RLR) family, which also includes RIG-I and LGP2, and ...
ligands are poorly characterized, but the preference is for long double-stranded RNA (>2000 bp), such as the replicative form of picornavirus RNA that is found in picornavirus-infected cells.
LGP2 Probable ATP-dependent RNA helicase DHX58 also known as RIG-I-like receptor 3 (RLR-3) or RIG-I-like receptor LGP2 (RLR) is a RIG-I-like receptor dsRNA helicase enzyme that in humans is encoded by the ''DHX58'' gene. The protein encoded by the ge ...
binds to blunt-ended double-stranded RNA of variable length, and also to RNA-bound MDA5 to regulate
filament The word filament, which is descended from Latin ''filum'' meaning " thread", is used in English for a variety of thread-like structures, including: Astronomy * Galaxy filament, the largest known cosmic structures in the universe * Solar filament ...
formation. The latter is linked to LGP2's recognition of picornaviruses (e.g. encephalomyocarditis virus), as per MDA5.


Structural features

The RLR receptors are members of the DEAD-box (SF2) helicase family (despite containing a DExD/H motif, rather than the DEAD motif characteristic of the family) and share a common domain architecture. All contain a catalytic helicase core made up of two RecA-like domains. The catalytic helicase core contains at least 9 highly conserved sequence motifs that coordinate ATP and RNA binding and the hydrolysis of ATP to unwind RNA. A C-terminal domain (CTD; ) follows the helicase core and this domain also binds viral RNA. Distinct RNA-binding loops within the CTD of the three RLRs dictate the type of RNA that they can bind. In addition to the helicase core and CTD, RIG-I and MDA5 have two N-terminal CARD ( caspase active recruitment domains) that are essential to the initiation of downstream signaling. LGP2 is dissimilar to both RIG-I and MDA5 as it lacks the CARD signaling domains and instead is implicated as a positive and negative regulator of RIG-I and MDA5.


Activation of signaling

In uninfected cells that are absent of viral RNA RIG-I exists in an inactive conformation in which the CARD domains are masked due to their interaction with the CTD. Upon binding RNA, RIG-I changes into a conformation in which the CARD domains are exposed and ‘available’ for signaling. Conversely, the MDA5 CARDs are unhindered in the absence of viral RNA. As a safeguard for RLR activation, the exposed RIG-I and MDA5 CARDs can undergo
post-translational modifications Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribo ...
(e.g.
ubiquitination Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
,
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
) that either positively or negatively regulate downstream signaling.


RIG-I antiviral signaling

In the activated state the exposed RIG-I CARD domains interact with the CARD domains of MAVS (mitochondrial antiviral signaling protein, also known as IPS-1, VISA or Cardif) which sits on the outer surface of the
mitochondria A mitochondrion (; ) is an organelle found in the cells of most Eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used ...
. This binding event is essential to signaling as it causes MAVS to form large functional aggregates in which TRAF3 (TNF receptor-associated factor 3) and subsequently the IKKε/ TBK1 (I-kappa-B kinase-epsilon/TANK-binding kinase 1) complex are recruited. The IKKε/TBK1 complex leads to the activation of the transcription factors
interferon regulatory factor 3 Interferon regulatory factor 3, also known as IRF3, is an interferon regulatory factor. Function IRF3 is a member of the interferon regulatory transcription factor (IRF) family. IRF3 was originally discovered as a homolog of IRF1 and IRF2. ...
(IRF3) and IRF7 which induce type I (including IFNα and IFNβ) and type III interferons (IFN). The type I IFNs bind type I IFN receptors on the surface of the cell that produced them, and also other cell types that express the receptor, to activate
JAK-STAT The JAK-STAT signaling pathway is a chain of interactions between proteins in a cell, and is involved in processes such as immunity, cell division, cell death, and tumour formation. The pathway communicates information from chemical signals ou ...
(Janus kinase/signal transducers and activators of transcription) signaling. This leads to the induction of hundreds of interferon stimulated genes (ISGs) that amplify the IFN response. Overall this causes the death of infected cells, the protection of surrounding cells and the activation of the antigen-specific antiviral immune response. Collectively this coordinated antiviral immune response controls the viral infection.


Regulation

As prolonged IFN production is linked to human disease RLR signaling must be tightly regulated. One of various ways that this is achieved is by post-translationally modifying, or tagging, host RLR signaling proteins with phosphate (known as
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
) or
ubiquitin Ubiquitin is a small (8.6 kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 1980s. Fo ...
(known as ubiquitination). These tags can also be removed, which adds an additional regulatory layer to RLR signaling. These
post-translational modification Post-translational modification (PTM) is the covalent and generally enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by ribo ...
s, and their removal, are prevalent in RLR signaling and even regulate the RIG-I receptor itself. Most famously the RIG-I CARD domain is phosphorylated by
protein kinase C In cell biology, Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and ...
-α (PKC-α) and PKC-β in the resting state to negatively regulate signaling. Upon viral infection RIG-I is dephosphorylated by PP1α and PP1γ, permitting the ubiquitination of the RIG-I CARD domain by the E3 ligase
TRIM25 Tripartite motif-containing protein 25 is a protein that in humans is encoded by the ''TRIM25'' gene. Function The protein encoded by this gene is a member of the tripartite motif (TRIM) family grouping more than 70 TRIMs. TRIM proteins prima ...
to activate the RLR-mediated antiviral immune response. Given post-translational modifications are so pertinent to the activation of RLR signaling, it is not surprising that they are directly, or indirectly, targeted by viruses such as influenza A and measles, respectively, to suppress signaling.


Viral hijacking of RLR signaling

Viruses have evolved ways to subvert RLR signaling to enhance their survival. For example,
influenza A virus '' A virus'' (''IAV'') causes influenza in birds and some mammals, and is the only species of the genus ''Alphainfluenzavirus'' of the virus family ''Orthomyxoviridae''. Strains of all subtypes of influenza A virus have been isolated from wild ...
and
West Nile virus West Nile virus (WNV) is a single-stranded RNA virus that causes West Nile fever. It is a member of the family '' Flaviviridae'', from the genus '' Flavivirus'', which also contains the Zika virus, dengue virus, and yellow fever virus. The v ...
(WNV) use their NS1 (nonstructural protein 1) proteins to block RIG-I ubiquitination by TRIM25, or cause RIG-I degradation, respectively, which in turn inhibits IFN production. This outcome is also achieved by the
hepatitis C Hepatitis C is an infectious disease caused by the hepatitis C virus (HCV) that primarily affects the liver; it is a type of viral hepatitis. During the initial infection people often have mild or no symptoms. Occasionally a fever, dark urine, ...
(HCV) NS3/4A protein by cleaving a part of MAVS, and the foot-and-mouth disease virus (FMDV) leader protease (Lpro) which cleaves LGP2. Likewise,
dengue virus ''Dengue virus'' (DENV) is the cause of dengue fever. It is a mosquito-borne, single positive-stranded RNA virus of the family '' Flaviviridae''; genus '' Flavivirus''. Four serotypes of the virus have been found, a reported fifth has yet to ...
(DENV) uses its NS2B3, NS2A and NS4B proteins to bind IKKε and prevent IRF3 phosphorylation and its NS4A protein, as per the
zika virus ''Zika virus'' (ZIKV; pronounced or ) is a member of the virus family (biology), family ''Flaviviridae''. It is mosquito-borne disease, spread by daytime-active ''Aedes'' mosquitoes, such as ''Aedes aegypti, A. aegypti'' and ''Aedes albopict ...
, to bind MAVS to block RLR receptor binding. Another prominent example is that of the paramyxovirus V proteins, which directly bind various RLR or downstream signaling proteins including MDA5, LGP2, and STAT, or proteins such as PP1α and PP1γ that negatively regulate RLR signaling.


See also

*
NOD-like receptor The nucleotide-binding oligomerization domain-like receptors, or NOD-like receptors (NLRs) (also known as nucleotide-binding leucine-rich repeat receptors), are intracellular sensors of pathogen-associated molecular patterns (PAMPs) that enter the ...
*
Toll-like receptor Toll-like receptors (TLRs) are a class of proteins that play a key role in the innate immune system. They are single-pass membrane-spanning receptors usually expressed on sentinel cells such as macrophages and dendritic cells, that recognize ...


References


External links


PTHR14074
Helicase with Death Domain-Related
filter for human
{{Pattern recognition receptors Intracellular receptors RIG-I-like receptors