In
mathematics, rings are
algebraic structures that generalize
fields
Fields may refer to:
Music
* Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song b ...
: multiplication need not be
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
and
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
s need not exist. In other words, a ''ring'' is a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
equipped with two
binary operations satisfying properties analogous to those of
addition and
multiplication of
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. Ring elements may be numbers such as
integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s or
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s, but they may also be non-numerical objects such as
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
s,
square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
,
functions, and
power series
In mathematics, a power series (in one variable) is an infinite series of the form
\sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots
where ''an'' represents the coefficient of the ''n''th term and ''c'' is a con ...
.
Formally, a ''ring'' is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is
associative, is
distributive over the addition operation, and has a multiplicative
identity element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
. (Some authors use the term "
" with a missing i to refer to the more general structure that omits this last requirement; see .)
Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has profound implications on its behavior.
Commutative algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
, the theory of
commutative rings, is a major branch of
ring theory
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their r ...
. Its development has been greatly influenced by problems and ideas of
algebraic number theory and
algebraic geometry. The simplest commutative rings are those that admit division by non-zero elements; such rings are called
fields
Fields may refer to:
Music
* Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song b ...
.
Examples of commutative rings include the set of integers with their standard addition and multiplication, the set of polynomials with their addition and multiplication, the
coordinate ring
In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal ...
of an
affine algebraic variety
Affine may describe any of various topics concerned with connections or affinities.
It may refer to:
* Affine, a relative by marriage in law and anthropology
* Affine cipher, a special case of the more general substitution cipher
* Affine com ...
, and the
ring of integers of a number field. Examples of noncommutative rings include the ring of real
square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
with ,
group ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the giv ...
s in
representation theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
,
operator algebra
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.
The results obtained in the study of ...
s in
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined o ...
,
rings of differential operators, and
cohomology rings in
topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
.
The conceptualization of rings spanned the 1870s to the 1920s, with key contributions by
Dedekind
Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and
the axiomatic foundations of arithmetic. His ...
,
Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
,
Fraenkel, and
Noether. Rings were first formalized as a generalization of
Dedekind domain
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily ...
s that occur in
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, and of
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
s and rings of invariants that occur in
algebraic geometry and
invariant theory
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
. They later proved useful in other branches of mathematics such as
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
and
analysis
Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
.
Definition
A ring is a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
''R'' equipped with two binary operations + (addition) and ⋅ (multiplication) satisfying the following three sets of axioms, called the ring axioms
# ''R'' is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
under addition, meaning that:
#* (''a'' + ''b'') + ''c'' = ''a'' + (''b'' + ''c'') for all ''a'', ''b'', ''c'' in ''R'' (that is, + is
associative).
#* ''a'' + ''b'' = ''b'' + ''a'' for all ''a'', ''b'' in ''R'' (that is, + is
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
).
#* There is an element 0 in ''R'' such that ''a'' + 0 = ''a'' for all ''a'' in ''R'' (that is, 0 is the
additive identity In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element ''x'' in the set, yields ''x''. One of the most familiar additive identities is the number 0 from elemen ...
).
#* For each ''a'' in ''R'' there exists −''a'' in ''R'' such that ''a'' + (−''a'') = 0 (that is, −''a'' is the
additive inverse of ''a'').
# ''R'' is a
monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
Monoid ...
under multiplication, meaning that:
#* (''a'' ⋅ ''b'') ⋅ ''c'' = ''a'' ⋅ (''b'' ⋅ ''c'') for all ''a'', ''b'', ''c'' in ''R'' (that is, ⋅ is associative).
#* There is an element 1 in ''R'' such that and for all ''a'' in ''R'' (that is, 1 is the
multiplicative identity).
# Multiplication is
distributive with respect to addition, meaning that:
#* ''a'' ⋅ (''b'' + ''c'') = (''a'' ⋅ ''b'') + (''a'' ⋅ ''c'') for all ''a'', ''b'', ''c'' in ''R'' (left distributivity).
#* (''b'' + ''c'') ⋅ ''a'' = (''b'' ⋅ ''a'') + (''c'' ⋅ ''a'') for all ''a'', ''b'', ''c'' in ''R'' (right distributivity).
Notes on the definition
In the terminology of this article, a ring is defined to have a multiplicative identity, while a structure with the same axiomatic definition but without the requirement for a multiplicative identity is instead called a
rng (IPA: ). For example, the set of
even integer
In mathematics, parity is the Property (mathematics), property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because
\begin
-2 \cdot 2 &= -4 \\ ...
s with the usual + and ⋅ is a rng, but not a ring. As explained in ' below, many authors apply the term "ring" without requiring a multiplicative identity.
The multiplication symbol ⋅ is usually omitted; for example, ''xy'' means .
Although ring addition is
commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of ...
, ring multiplication is not required to be commutative: ''ab'' need not necessarily equal ''ba''. Rings that also satisfy commutativity for multiplication (such as the ring of integers) are called ''
commutative rings''. Books on commutative algebra or algebraic geometry often adopt the convention that ''ring'' means ''commutative ring'', to simplify terminology.
In a ring, multiplicative inverses are not required to exist. A non
zero
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
commutative ring in which every nonzero element has a
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
is called a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
.
The additive group of a ring is the underlying set equipped with only the operation of addition. Although the definition requires that the additive group be abelian, this can be inferred from the other ring axioms. The proof makes use of the "1", and does not work in a rng. (For a rng, omitting the axiom of commutativity of addition leaves it inferable from the remaining rng assumptions only for elements that are products: .)
Although most modern authors use the term "ring" as defined here, there are a few who use the term to refer to more general structures in which there is no requirement for multiplication to be associative. For these authors, every
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary ...
is a "ring".
Illustration
The most familiar example of a ring is the set of all integers
, consisting of the
number
A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
s
: ... , −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, ...
The axioms of a ring were elaborated as a generalization of familiar properties of addition and multiplication of integers.
Some properties
Some basic properties of a ring follow immediately from the axioms:
* The additive identity is unique.
* The additive inverse of each element is unique.
* The multiplicative identity is unique.
* For any element ''x'' in a ring ''R'', one has (zero is an
absorbing element In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element i ...
with respect to multiplication) and .
* If in a ring ''R'' (or more generally, 0 is a unit element), then ''R'' has only one element, and is called the
zero ring
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which for ...
.
* If a ring ''R'' contains the zero ring as a subring, then ''R'' itself is the zero ring.
* The
binomial formula
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
holds for any ''x'' and ''y'' satisfying .
Example: Integers modulo 4
Equip the set
with the following operations:
* The sum
in Z/4Z is the remainder when the integer is divided by 4 (as is always smaller than 8, this remainder is either or ). For example,
and
.
* The product
in Z/4Z is the remainder when the integer ''xy'' is divided by 4. For example,
and
.
Then Z/4Z is a ring: each axiom follows from the corresponding axiom for Z. If ''x'' is an integer, the remainder of ''x'' when divided by 4 may be considered as an element of Z/4Z, and this element is often denoted by or
, which is consistent with the notation for 0, 1, 2, 3. The additive inverse of any
in Z/4Z is
. For example,
Example: 2-by-2 matrices
The set of 2-by-2
square matrices
In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied.
Square matrices are often ...
with entries in a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
is
:
With the operations of matrix addition and
matrix multiplication
In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the s ...
,
satisfies the above ring axioms. The element
is the multiplicative identity of the ring. If
and
, then
while
; this example shows that the ring is noncommutative.
More generally, for any ring , commutative or not, and any nonnegative integer , the square matrices of dimension with entries in form a ring: see
Matrix ring.
History
Dedekind
The study of rings originated from the theory of
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
s and the theory of
algebraic integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s.
In 1871,
Richard Dedekind defined the concept of the ring of integers of a number field. In this context, he introduced the terms "ideal" (inspired by
Ernst Kummer
Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems.
Mathematicians are concerned ...
's notion of ideal number) and "module" and studied their properties. Dedekind did not use the term "ring" and did not define the concept of a ring in a general setting.
Hilbert
The term "Zahlring" (number ring) was coined by
David Hilbert in 1892 and published in 1897. In 19th century German, the word "Ring" could mean "association", which is still used today in English in a limited sense (for example, spy ring), so if that were the etymology then it would be similar to the way "group" entered mathematics by being a non-technical word for "collection of related things". According to Harvey Cohn, Hilbert used the term for a ring that had the property of "circling directly back" to an element of itself (in the sense of an
equivalence). Specifically, in a ring of algebraic integers, all high powers of an algebraic integer can be written as an integral combination of a fixed set of lower powers, and thus the powers "cycle back". For instance, if then , , , , , and so on; in general, ''a''
''n'' is going to be an integral linear combination of 1, ''a'', and ''a''
2.
Fraenkel and Noether
The first axiomatic definition of a ring was given by
Adolf Fraenkel in 1915, but his axioms were stricter than those in the modern definition. For instance, he required every
non-zero-divisor to have a
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
. In 1921,
Emmy Noether
Amalie Emmy NoetherEmmy is the '' Rufname'', the second of two official given names, intended for daily use. Cf. for example the résumé submitted by Noether to Erlangen University in 1907 (Erlangen University archive, ''Promotionsakt Emmy Noeth ...
gave a modern axiomatic definition of commutative rings (with and without 1) and developed the foundations of commutative ring theory in her paper ''Idealtheorie in Ringbereichen''.
Multiplicative identity and the term "ring"
Fraenkel's axioms for a "ring" included that of a multiplicative identity, whereas Noether's did not.
Most or all books on algebra up to around 1960 followed Noether's convention of not requiring a 1 for a "ring". Starting in the 1960s, it became increasingly common to see books including the existence of 1 in the definition of "ring", especially in advanced books by notable authors such as Artin, Atiyah and MacDonald, Bourbaki, Eisenbud, and Lang. There are also books published as late as 2006 that use the term without the requirement for a 1.
Gardner and Wiegandt assert that, when dealing with several objects in the category of rings (as opposed to working with a fixed ring), if one requires all rings to have a 1, then some consequences include the lack of existence of infinite direct sums of rings, and that proper direct summands of rings are not subrings. They conclude that "in many, maybe most, branches of ring theory the requirement of the existence of a unity element is not sensible, and therefore unacceptable."
Poonen makes the counterargument that the natural notion for rings is the
direct product rather than the direct sum. He further argues that rings without a multiplicative identity are not totally associative (the product of any finite sequence of ring elements, including the empty sequence, is well-defined, independent of the order of operations) and writes "the natural extension of associativity demands that rings should contain an empty product, so it is natural to require rings to have a 1".
Authors who follow either convention for the use of the term "ring" may use one of the following terms to refer to objects satisfying the other convention:
:* to include a requirement a multiplicative identity: "unital ring", "unitary ring", "unit ring", "ring with unity", "ring with identity", "ring with a unit", or "ring with 1".
:* to omit a requirement for a multiplicative identity: "rng" or "pseudo-ring", although the latter may be confusing because it also has other meanings.
Basic examples
Commutative rings
* The prototypical example is the ring of integers with the two operations of addition and multiplication.
* The rational, real and complex numbers are commutative rings of a type called
fields
Fields may refer to:
Music
* Fields (band), an indie rock band formed in 2006
* Fields (progressive rock band), a progressive rock band formed in 1971
* ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010)
* "Fields", a song b ...
.
* A unital associative
algebra over a commutative ring
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition a ...
is itself a ring as well as an
-module. Some examples:
** The algebra of
polynomials with coefficients in .
** The algebra of
formal power series with coefficients in .
** The set of all
continuous
Continuity or continuous may refer to:
Mathematics
* Continuity (mathematics), the opposing concept to discreteness; common examples include
** Continuous probability distribution or random variable in probability and statistics
** Continuous ...
real-valued
functions defined on the real line forms a commutative -algebra. The operations are
pointwise In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the ''pointwise operations'', that is, operations defined ...
addition and multiplication of functions.
** Let be a set, and let be a ring. Then the set of all functions from to forms a ring, which is commutative if is commutative. The ring of continuous functions in the previous example is a subring of this ring if is the real line and .
* The ring of
quadratic integers
In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form
:
with and (usual) integers. When algebra ...
, the integral closure of
in a quadratic extension of
. It is a subring of the ring of all
algebraic integers
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
.
* The ring of
profinite integer In mathematics, a profinite integer is an element of the ring (sometimes pronounced as zee-hat or zed-hat)
:\widehat = \varprojlim \mathbb/n\mathbb = \prod_p \mathbb_p
where
:\varprojlim \mathbb/n\mathbb
indicates the profinite completion of \math ...
s
, the (infinite) product of the rings of ''p''-adic integers
over all prime numbers ''p''.
* The
Hecke ring, the ring generated by Hecke operators.
* If is a set, then the
power set
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
of becomes a ring if we define addition to be the
symmetric difference
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets \ and \ is \.
Th ...
of sets and multiplication to be
intersection. This is an example of a
Boolean ring In mathematics, a Boolean ring ''R'' is a ring for which ''x''2 = ''x'' for all ''x'' in ''R'', that is, a ring that consists only of idempotent elements. An example is the ring of integers modulo 2.
Every Boolean ring gives rise to a Boolean al ...
.
Noncommutative rings
* For any ring ''R'' and any natural number ''n'', the set of all square ''n''-by-''n''
matrices
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** ''The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
with entries from ''R'', forms a ring with matrix addition and matrix multiplication as operations. For , this matrix ring is isomorphic to ''R'' itself. For (and ''R'' not the zero ring), this matrix ring is noncommutative.
* If ''G'' is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
, then the
endomorphisms of ''G'' form a ring, the
endomorphism ring
In mathematics, the endomorphisms of an abelian group ''X'' form a ring. This ring is called the endomorphism ring of ''X'', denoted by End(''X''); the set of all homomorphisms of ''X'' into itself. Addition of endomorphisms arises naturally in a ...
End(''G'') of ''G''. The operations in this ring are addition and composition of endomorphisms. More generally, if ''V'' is a
left module
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the mo ...
over a ring ''R'', then the set of all ''R''-linear maps forms a ring, also called the endomorphism ring and denoted by End
''R''(''V'').
*The
endomorphism ring of an elliptic curve. It is a commutative ring if the elliptic curve is defined over a field of characteristic zero.
* If ''G'' is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
and ''R'' is a ring, the
group ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the giv ...
of ''G'' over ''R'' is a
free module over ''R'' having ''G'' as basis. Multiplication is defined by the rules that the elements of ''G'' commute with the elements of ''R'' and multiply together as they do in the group ''G''.
* The
ring of differential operators (depending on the context). In fact, many rings that appear in analysis are noncommutative. For example, most
Banach algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach ...
s are noncommutative.
Non-rings
* The set of
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called ''cardinal ...
s . with the usual operations is not a ring, since is not even a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
(the elements are not all
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that is ...
with respect to addition). For instance, there is no natural number which can be added to 3 to get 0 as a result. There is a natural way to enlarge it to a ring, by including negative numbers to produce the ring of integers . The natural numbers (including 0) form an algebraic structure known as a
semiring
In abstract algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse.
The term rig is also used occasionally—this originated as a joke, suggesting that rigs ar ...
(which has all of the axioms of a ring excluding that of an additive inverse).
* Let ''R'' be the set of all continuous functions on the real line that vanish outside a bounded interval that depends on the function, with addition as usual but with multiplication defined as
convolution
In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' ...
:
Then ''R'' is a rng, but not a ring: the
Dirac delta function has the property of a multiplicative identity, but it is not a function and hence is not an element of ''R''.
Basic concepts
Products and powers
For each nonnegative integer , given a sequence
of elements of , one can define the product
recursively: let and let for .
As a special case, one can define nonnegative integer powers of an element of a ring: and for . Then for all .
Elements in a ring
A left
zero divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zer ...
of a ring
is an element
in the ring such that there exists a nonzero element
of
such that
. A right zero divisor is defined similarly.
A
nilpotent element
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0.
The term was introduced by Benjamin Peirce in the context of his work on the cla ...
is an element
such that
for some
. One example of a nilpotent element is a
nilpotent matrix In linear algebra, a nilpotent matrix is a square matrix ''N'' such that
:N^k = 0\,
for some positive integer k. The smallest such k is called the index of N, sometimes the degree of N.
More generally, a nilpotent transformation is a linear tr ...
. A nilpotent element in a
nonzero ring is necessarily a zero divisor.
An
idempotent
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
is an element such that
. One example of an idempotent element is a
projection in linear algebra.
A
unit
Unit may refer to:
Arts and entertainment
* UNIT, a fictional military organization in the science fiction television series ''Doctor Who''
* Unit of action, a discrete piece of action (or beat) in a theatrical presentation
Music
* ''Unit'' (a ...
is an element
having a
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a fraction ''a''/ ...
; in this case the inverse is unique, and is denoted by
. The set of units of a ring is a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
under ring multiplication; this group is denoted by
or
or
. For example, if ''R'' is the ring of all square matrices of size ''n'' over a field, then
consists of the set of all invertible matrices of size ''n'', and is called the
general linear group
In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, ...
.
Subring
A subset ''S'' of ''R'' is called a
subring if any one of the following equivalent conditions holds:
* the addition and multiplication of ''R''
restrict
In the C programming language, restrict is a keyword, introduced by the C99 standard, that can be used in pointer declarations. By adding this type qualifier, a programmer hints to the compiler that for the lifetime of the pointer, no other p ...
to give operations ''S'' × ''S'' → ''S'' making ''S'' a ring with the same multiplicative identity as ''R''.
* 1 ∈ ''S''; and for all ''x'', ''y'' in ''S'', the elements ''xy'', ''x'' + ''y'', and −''x'' are in ''S''.
* ''S'' can be equipped with operations making it a ring such that the inclusion map ''S'' → ''R'' is a ring homomorphism.
For example, the ring Z of integers is a subring of the
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
of real numbers and also a subring of the ring of
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
s Z
'X''(in both cases, Z contains 1, which is the multiplicative identity of the larger rings). On the other hand, the subset of even integers 2Z does not contain the identity element 1 and thus does not qualify as a subring of Z; one could call 2Z a
subrng, however.
An intersection of subrings is a subring. Given a subset ''E'' of ''R'', the smallest subring of ''R'' containing ''E'' is the intersection of all subrings of ''R'' containing ''E'', and it is called ''the subring generated by E''.
For a ring ''R'', the smallest subring of ''R'' is called the ''characteristic subring'' of ''R''. It can be generated through addition of copies of 1 and −1. It is possible that
(''n'' times) can be zero. If ''n'' is the smallest positive integer such that this occurs, then ''n'' is called the ''
characteristic'' of ''R''. In some rings,
is never zero for any positive integer ''n'', and those rings are said to have ''characteristic zero''.
Given a ring ''R'', let
denote the set of all elements ''x'' in ''R'' such that ''x'' commutes with every element in ''R'':
for any ''y'' in ''R''. Then
is a subring of ''R'', called the
center
Center or centre may refer to:
Mathematics
*Center (geometry), the middle of an object
* Center (algebra), used in various contexts
** Center (group theory)
** Center (ring theory)
* Graph center, the set of all vertices of minimum eccentrici ...
of ''R''. More generally, given a subset ''X'' of ''R'', let ''S'' be the set of all elements in ''R'' that commute with every element in ''X''. Then ''S'' is a subring of ''R'', called the
centralizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', ...
(or commutant) of ''X''. The center is the centralizer of the entire ring ''R''. Elements or subsets of the center are said to be ''central'' in ''R''; they (each individually) generate a subring of the center.
Ideal
Let ''R'' be a ring. A left ideal of ''R'' is a nonempty subset ''I'' of ''R'' such that for any ''x'', ''y'' in ''I'' and ''r'' in ''R'', the elements
and
are in ''I''. If
denotes the ''R''-span of ''I'', that is, the set of finite sums
:
then ''I'' is a left ideal if
. Similarly, a right ideal is a subset ''I'' such that
. A subset ''I'' is said to be a two-sided ideal or simply ideal if it is both a left ideal and right ideal. A one-sided or two-sided ideal is then an additive subgroup of ''R''. If ''E'' is a subset of ''R'', then
is a left ideal, called the left ideal generated by ''E''; it is the smallest left ideal containing ''E''. Similarly, one can consider the right ideal or the two-sided ideal generated by a subset of ''R''.
If ''x'' is in ''R'', then
and
are left ideals and right ideals, respectively; they are called the
principal left ideals and right ideals generated by ''x''. The principal ideal
is written as
. For example, the set of all positive and negative multiples of 2 along with 0 form an ideal of the integers, and this ideal is generated by the integer 2. In fact, every ideal of the ring of integers is principal.
Like a group, a ring is said to be
simple
Simple or SIMPLE may refer to:
*Simplicity, the state or quality of being simple
Arts and entertainment
* ''Simple'' (album), by Andy Yorke, 2008, and its title track
* "Simple" (Florida Georgia Line song), 2018
* "Simple", a song by Johnn ...
if it is nonzero and it has no proper nonzero two-sided ideals. A commutative simple ring is precisely a field.
Rings are often studied with special conditions set upon their ideals. For example, a ring in which there is no strictly increasing infinite
chain of left ideals is called a left
Noetherian ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
. A ring in which there is no strictly decreasing infinite chain of left ideals is called a left
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are ...
. It is a somewhat surprising fact that a left Artinian ring is left Noetherian (the
Hopkins–Levitzki theorem In the branch of abstract algebra called ring theory, the Akizuki–Hopkins–Levitzki theorem connects the descending chain condition and ascending chain condition in modules over semiprimary rings. A ring ''R'' (with 1) is called semiprimar ...
). The integers, however, form a Noetherian ring which is not Artinian.
For commutative rings, the ideals generalize the classical notion of divisibility and decomposition of an integer into prime numbers in algebra. A proper ideal ''P'' of ''R'' is called a
prime ideal if for any elements
we have that
implies either
or
. Equivalently, ''P'' is prime if for any ideals
we have that
implies either
or
This latter formulation illustrates the idea of ideals as generalizations of elements.
Homomorphism
A
homomorphism
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" ...
from a ring to a ring is a function ''f'' from ''R'' to ''S'' that preserves the ring operations; namely, such that, for all ''a'', ''b'' in ''R'' the following identities hold:
* ''f''(''a'' + ''b'') = ''f''(''a'') ‡ ''f''(''b'')
* ''f''(''a'' ⋅ ''b'') = ''f''(''a'') ∗ ''f''(''b'')
* ''f''(1
''R'') = 1
''S''
If one is working with rngs, then the third condition is dropped.
A ring homomorphism ''f'' is said to be an
isomorphism
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
if there exists an inverse homomorphism to ''f'' (that is, a ring homomorphism that is an
inverse function
In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ .
For a function f\colon X ...
). Any
bijective
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
ring homomorphism is a ring isomorphism. Two rings
are said to be isomorphic if there is an isomorphism between them and in that case one writes
. A ring homomorphism between the same ring is called an endomorphism and an isomorphism between the same ring an automorphism.
Examples:
* The function that maps each integer ''x'' to its remainder modulo 4 (a number in ) is a homomorphism from the ring Z to the quotient ring Z/4Z ("quotient ring" is defined below).
* If
is a unit element in a ring ''R'', then
is a ring homomorphism, called an
inner automorphism
In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the ''conjugating element''. They can be realized via simple operations from within the group it ...
of ''R''.
* Let ''R'' be a commutative ring of prime characteristic ''p''. Then
is a ring endomorphism of ''R'' called the
Frobenius homomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphism m ...
.
* The
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
of a field extension
is the set of all automorphisms of ''L'' whose restrictions to ''K'' are the identity.
* For any ring ''R'', there are a unique ring homomorphism and a unique ring homomorphism .
* An
epimorphism
In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms ,
: g_1 \circ f = g_2 \circ f ...
(that is, right-cancelable morphism) of rings need not be surjective. For example, the unique map is an epimorphism.
* An algebra homomorphism from a ''k''-algebra to the
endomorphism algebra
In mathematics, an endomorphism is a morphism from a mathematical object to itself. An endomorphism that is also an isomorphism is an automorphism. For example, an endomorphism of a vector space is a linear map , and an endomorphism of a gro ...
of a vector space over ''k'' is called a
representation of the algebra.
Given a ring homomorphism
, the set of all elements mapped to 0 by ''f'' is called the
kernel
Kernel may refer to:
Computing
* Kernel (operating system), the central component of most operating systems
* Kernel (image processing), a matrix used for image convolution
* Compute kernel, in GPGPU programming
* Kernel method, in machine learn ...
of ''f''. The kernel is a two-sided ideal of ''R''. The image of ''f'', on the other hand, is not always an ideal, but it is always a subring of ''S''.
To give a ring homomorphism from a commutative ring ''R'' to a ring ''A'' with image contained in the center of ''A'' is the same as to give a structure of an
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary ...
over ''R'' to ''A'' (which in particular gives a structure of an ''A''-module).
Quotient ring
The notion of
quotient ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
is analogous to the notion of a
quotient group. Given a ring and a two-sided
ideal
Ideal may refer to:
Philosophy
* Ideal (ethics), values that one actively pursues as goals
* Platonic ideal, a philosophical idea of trueness of form, associated with Plato
Mathematics
* Ideal (ring theory), special subsets of a ring considere ...
''I'' of , view ''I'' as subgroup of ; then the quotient ring ''R''/''I'' is the set of
coset
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) ...
s of ''I'' together with the operations
:(''a'' + ''I'') + (''b'' + ''I'') = (''a'' + ''b'') + ''I'' and
:(''a'' + ''I'')(''b'' + ''I'') = (''ab'') + ''I''.
for all ''a'', ''b'' in ''R''. The ring ''R''/''I'' is also called a factor ring.
As with a quotient group, there is a canonical homomorphism
, given by
. It is surjective and satisfies the following universal property:
*If
is a ring homomorphism such that
, then there is a unique homomorphism
such that
.
For any ring homomorphism
, invoking the universal property with
produces a homomorphism
that gives an isomorphism from
to the image of .
Module
The concept of a ''module over a ring'' generalizes the concept of a
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
(over a
field
Field may refer to:
Expanses of open ground
* Field (agriculture), an area of land used for agricultural purposes
* Airfield, an aerodrome that lacks the infrastructure of an airport
* Battlefield
* Lawn, an area of mowed grass
* Meadow, a grass ...
) by generalizing from multiplication of vectors with elements of a field (
scalar multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector b ...
) to multiplication with elements of a ring. More precisely, given a ring with 1, an -module is an
abelian group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
equipped with an
operation
Operation or Operations may refer to:
Arts, entertainment and media
* ''Operation'' (game), a battery-operated board game that challenges dexterity
* Operation (music), a term used in musical set theory
* ''Operations'' (magazine), Multi-Ma ...
(associating an element of to every pair of an element of and an element of ) that satisfies certain
axioms
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
. This operation is commonly denoted multiplicatively and called multiplication. The axioms of modules are the following: for all in and all in , we have:
* is an abelian group under addition.
*
*
*
*
When the ring is
noncommutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
these axioms define ''left modules''; ''right modules'' are defined similarly by writing instead of . This is not only a change of notation, as the last axiom of right modules (that is ) becomes , if left multiplication (by ring elements) is used for a right module.
Basic examples of modules are ideals, including the ring itself.
Although similarly defined, the theory of modules is much more complicated than that of vector space, mainly, because, unlike vector spaces, modules are not characterized (up to an isomorphism) by a single invariant (the
dimension of a vector space
In mathematics, the dimension of a vector space ''V'' is the cardinality (i.e., the number of vectors) of a basis of ''V'' over its base field. p. 44, §2.36 It is sometimes called Hamel dimension (after Georg Hamel) or algebraic dimension to di ...
). In particular, not all modules have a
basis
Basis may refer to:
Finance and accounting
* Adjusted basis, the net cost of an asset after adjusting for various tax-related items
*Basis point, 0.01%, often used in the context of interest rates
* Basis trading, a trading strategy consisting ...
.
The axioms of modules imply that , where the first minus denotes the
additive inverse in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.
Any ring homomorphism induces a structure of a module: if is a ring homomorphism, then is a left module over by the multiplication: . If is commutative or if is contained in the
center
Center or centre may refer to:
Mathematics
*Center (geometry), the middle of an object
* Center (algebra), used in various contexts
** Center (group theory)
** Center (ring theory)
* Graph center, the set of all vertices of minimum eccentrici ...
of , the ring is called a -
algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics.
Elementary ...
. In particular, every ring is an algebra over the integers.
Constructions
Direct product
Let ''R'' and ''S'' be rings. Then the
product
Product may refer to:
Business
* Product (business), an item that serves as a solution to a specific consumer problem.
* Product (project management), a deliverable or set of deliverables that contribute to a business solution
Mathematics
* Produ ...
can be equipped with the following natural ring structure:
* (''r''
1, ''s''
1) + (''r''
2, ''s''
2) = (''r''
1 + ''r''
2, ''s''
1 + ''s''
2)
* (''r''
1, ''s''
1) ⋅ (''r''
2, ''s''
2) = (''r''
1 ⋅ ''r''
2, ''s''
1 ⋅ ''s''
2)
for all ''r''
1, ''r''
2 in ''R'' and ''s''
1, ''s''
2 in ''S''. The ring with the above operations of addition and multiplication and the multiplicative identity
is called the
direct product of ''R'' with ''S''. The same construction also works for an arbitrary family of rings: if
are rings indexed by a set ''I'', then
is a ring with componentwise addition and multiplication.
Let ''R'' be a commutative ring and
be ideals such that
whenever
. Then the
Chinese remainder theorem says there is a canonical ring isomorphism:
A "finite" direct product may also be viewed as a direct sum of ideals. Namely, let
be rings,
the inclusions with the images
(in particular
are rings though not subrings). Then
are ideals of ''R'' and
as a direct sum of abelian groups (because for abelian groups finite products are the same as direct sums). Clearly the direct sum of such ideals also defines a product of rings that is isomorphic to ''R''. Equivalently, the above can be done through
central idempotent In ring theory, a branch of abstract algebra, an idempotent element or simply idempotent of a ring is an element ''a'' such that . That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that for ...
s. Assume that ''R'' has the above decomposition. Then we can write
By the conditions on
, one has that
are central idempotents and
(orthogonal). Again, one can reverse the construction. Namely, if one is given a partition of 1 in orthogonal central idempotents, then let
, which are two-sided ideals. If each
is not a sum of orthogonal central idempotents, then their direct sum is isomorphic to ''R''.
An important application of an infinite direct product is the construction of a
projective limit
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits c ...
of rings (see below). Another application is a
restricted product of a family of rings (cf.
adele ring
Adele Laurie Blue Adkins (, ; born 5 May 1988), professionally known by the mononym Adele, is an English singer and songwriter. After graduating in arts from the BRIT School in 2006, Adele signed a reco ...
).
Polynomial ring
Given a symbol ''t'' (called a variable) and a commutative ring ''R'', the set of polynomials
:
forms a commutative ring with the usual addition and multiplication, containing ''R'' as a subring. It is called the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
over ''R''. More generally, the set
_(in_fact,_complete_ring.html" ;"title="local_ring.html" "title="">![t!.html" ;"title=".html" ;"title="![t">![t!">.html" ;"title="![t">![t!/math> consists of formal power series
:
together with multiplication and addition that mimic those for convergent series. It contains