HOME
*





Cyclic Algebra
In algebra, a cyclic division algebra is one of the basic examples of a division algebra over a field, and plays a key role in the theory of central simple algebras. Definition Let ''A'' be a finite-dimensional central simple algebra over a field ''F''. Then ''A'' is said to be cyclic if it contains a strictly maximal subfield ''E'' such that ''E''/''F'' is a cyclic field extension (i.e., the Galois group is a cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...). See also * Factor system#Cyclic algebras - cyclic algebras described by factor systems. * Brauer group#Cyclic algebras - cyclic algebras are representative of Brauer classes. References * * {{algebra-stub Algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Division Algebra
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Definitions Formally, we start with a non-zero algebra ''D'' over a field. We call ''D'' a division algebra if for any element ''a'' in ''D'' and any non-zero element ''b'' in ''D'' there exists precisely one element ''x'' in ''D'' with ''a'' = ''bx'' and precisely one element ''y'' in ''D'' such that . For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element ''a'' has a multiplicative inverse (i.e. an element ''x'' with ). Associative division algebras The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite- dimensional as a vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Central Simple Algebra
In ring theory and related areas of mathematics a central simple algebra (CSA) over a field ''K'' is a finite-dimensional associative ''K''-algebra ''A'' which is simple, and for which the center is exactly ''K''. (Note that ''not'' every simple algebra is a central simple algebra over its center: for instance, if ''K'' is a field of characteristic 0, then the Weyl algebra K ,\partial_X/math> is a simple algebra with center ''K'', but is ''not'' a central simple algebra over ''K'' as it has infinite dimension as a ''K''-module.) For example, the complex numbers C form a CSA over themselves, but not over the real numbers R (the center of C is all of C, not just R). The quaternions H form a 4-dimensional CSA over R, and in fact represent the only non-trivial element of the Brauer group of the reals (see below). Given two central simple algebras ''A'' ~ ''M''(''n'',''S'') and ''B'' ~ ''M''(''m'',''T'') over the same field ''F'', ''A'' and ''B'' are called ''similar'' (or '' Braue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strictly Maximal Subfield
In algebra, a subfield of an algebra ''A'' over a field ''F'' is an ''F''- subalgebra that is also a field. A maximal subfield is a subfield that is not contained in a strictly larger subfield of ''A''. If ''A'' is a finite-dimensional central simple algebra In ring theory and related areas of mathematics a central simple algebra (CSA) over a field ''K'' is a finite-dimensional associative ''K''-algebra ''A'' which is simple, and for which the center is exactly ''K''. (Note that ''not'' every simpl ..., then a subfield ''E'' of ''A'' is called a strictly maximal subfield if : F= (\dim_F A)^. References * Richard S. Pierce. ''Associative algebras''. Graduate texts in mathematics, Vol. 88, Springer-Verlag, 1982, {{algebra-stub Algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cyclic Field Extension
In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension. Class field theory provides detailed information about the abelian extensions of number fields, function fields of algebraic curves over finite fields, and local fields. There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either definition, is always abelian. If a field ''K'' contains a primitive ''n''-th root of unity and the ''n''-th ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a '' generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Factor System
In mathematics, a factor system (sometimes called factor set) is a fundamental tool of Otto Schreier’s classical theory for group extension problem. It consists of a set of automorphisms and a binary function on a group satisfying certain condition (so-called ''cocycle condition''). In fact, a factor system constitutes a realisation of the cocycles in the second cohomology group in group cohomology. Introduction Suppose is a group and is an abelian group. For a group extension : 1 \to A \to X \to G \to 1, there exists a factor system which consists of a function and homomorphism such that it makes the cartesian product a group as : (g,a)*(h,b) := (gh, f(g,h)a^b). So must be a "group 2-cocycle" (symbolically, ). In fact, does not have to be abelian, but the situation is more complicated for non-abelian groups If is trivial and gives inner automorphisms, then that group extension is split, so become semidirect product of with . If a group algebra is given, then a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brauer Group
Brauer or Bräuer is a surname of German origin, meaning "brewer". Notable people with the name include:- * Alfred Brauer (1894–1985), German-American mathematician, brother of Richard * Andreas Brauer (born 1973), German film producer * Arik Brauer (1929–2021), Austrian painter, poet, and actor, father of Timna Brauer * August Brauer (1863-1917), German zoologist * Friedrich Moritz Brauer (1832–1904), Austrian entomologist and museum director * Georg Brauer (1908–2001), German chemist * Ingrid Arndt-Brauer (born 1961), German politician; member of the Bundestag * Jono Brauer (born 1981), Australian Olympic skier * Max Brauer (1887–1973), German politician; First Mayor of Hamburg * Michael Brauer (contemporary), American audio engineer * Rich Brauer (born 1954), American politician from Illinois; state legislator since 2003 * Richard Brauer (1901–1977), German-American mathematician * Richard H. W. Brauer (contemporary), American art museum director; eponym of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stamm ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]