Quaternion Algebra
   HOME
*





Quaternion Algebra
In mathematics, a quaternion algebra over a field ''F'' is a central simple algebra ''A'' over ''F''See Milies & Sehgal, An introduction to group rings, exercise 17, chapter 2. that has dimension 4 over ''F''. Every quaternion algebra becomes a matrix algebra by '' extending scalars'' (equivalently, tensoring with a field extension), i.e. for a suitable field extension ''K'' of ''F'', A \otimes_F K is isomorphic to the 2 × 2 matrix algebra over ''K''. The notion of a quaternion algebra can be seen as a generalization of Hamilton's quaternions to an arbitrary base field. The Hamilton quaternions are a quaternion algebra (in the above sense) over F = \mathbb, and indeed the only one over \mathbb apart from the 2 × 2 real matrix algebra, up to isomorphism. When F = \mathbb, then the biquaternions form the quaternion algebra over ''F''. Structure ''Quaternion algebra'' here means something more general than the algebra of Hamilton's quaternions. When th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Division Algebra
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field in which division, except by zero, is always possible. Definitions Formally, we start with a non-zero algebra ''D'' over a field. We call ''D'' a division algebra if for any element ''a'' in ''D'' and any non-zero element ''b'' in ''D'' there exists precisely one element ''x'' in ''D'' with ''a'' = ''bx'' and precisely one element ''y'' in ''D'' such that . For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element ''a'' has a multiplicative inverse (i.e. an element ''x'' with ). Associative division algebras The best-known examples of associative division algebras are the finite-dimensional real ones (that is, algebras over the field R of real numbers, which are finite- dimensional as a vector space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ferdinand Georg Frobenius
Ferdinand Georg Frobenius (26 October 1849 – 3 August 1917) was a German mathematician, best known for his contributions to the theory of elliptic functions, differential equations, number theory, and to group theory. He is known for the famous determinantal identities, known as Frobenius–Stickelberger formulae, governing elliptic functions, and for developing the theory of biquadratic forms. He was also the first to introduce the notion of rational approximations of functions (nowadays known as Padé approximants), and gave the first full proof for the Cayley–Hamilton theorem. He also lent his name to certain differential-geometric objects in modern mathematical physics, known as Frobenius manifolds. Biography Ferdinand Georg Frobenius was born on 26 October 1849 in Charlottenburg, a suburb of Berlin from parents Christian Ferdinand Frobenius, a Protestant parson, and Christine Elizabeth Friedrich. He entered the Joachimsthal Gymnasium in 1860 when he was nearly eleven. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local Class Field Theory
In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the ''p''-adic numbers Q''p'' (where ''p'' is any prime number), or a finite extension of the field of formal Laurent series F''q''((''T'')) over a finite field F''q''. Approaches to local class field theory Local class field theory gives a description of the Galois group ''G'' of the maximal abelian extension of a local field ''K'' via the reciprocity map which acts from the multiplicative group ''K''×=''K''\. For a finite abelian extension ''L'' of ''K'' the reciprocity map induces an isomorphism of the quotient group ''K''×/''N''(''L''×) of ''K''× by the norm group ''N'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hilbert Symbol
In mathematics, the Hilbert symbol or norm-residue symbol is a function (–, –) from ''K''× × ''K''× to the group of ''n''th roots of unity in a local field ''K'' such as the fields of reals or p-adic numbers . It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields. The Hilbert symbol has been generalized to higher local fields. Quadratic Hilbert symbol Over a local field ''K'' whose multiplicative group of non-zero elements is ''K''×, the quadratic Hilbert symbol is the function (–, –) from ''K''× × ''K''× to defined by :(a,b)=\begin+1,&\mboxz^2=ax^2+by^2\mbox(x,y,z)\in K^3;\\-1,&\mbox\end Equivalently, (a, b) = 1 if and only if b is equal to the norm of an element of the quadratic extension Ksqrt/math> page 110. Properties The follo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Field
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). Tenso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexander Merkurjev
Aleksandr Sergeyevich Merkurjev (russian: Алекса́ндр Сергее́вич Мерку́рьев, born September 25, 1955) is a Russian-American mathematician, who has made major contributions to the field of algebra. Currently Merkurjev is a professor at the University of California, Los Angeles. Work Merkurjev's work focuses on algebraic groups, quadratic forms, Galois cohomology, algebraic K-theory and central simple algebras. In the early 1980s Merkurjev proved a fundamental result about the structure of central simple algebras of period dividing 2, which relates the 2-torsion of the Brauer group with Milnor K-theory. In subsequent work with Suslin this was extended to higher torsion as the Merkurjev–Suslin theorem. The full statement of the norm residue isomorphism theorem (also known as the Bloch-Kato conjecture) was proven by Voevodsky. In the late 1990s Merkurjev gave the most general approach to the notion of essential dimension, introduced by Buhler and R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brauer Group
Brauer or Bräuer is a surname of German origin, meaning "brewer". Notable people with the name include:- * Alfred Brauer (1894–1985), German-American mathematician, brother of Richard * Andreas Brauer (born 1973), German film producer * Arik Brauer (1929–2021), Austrian painter, poet, and actor, father of Timna Brauer * August Brauer (1863-1917), German zoologist * Friedrich Moritz Brauer (1832–1904), Austrian entomologist and museum director * Georg Brauer (1908–2001), German chemist * Ingrid Arndt-Brauer (born 1961), German politician; member of the Bundestag * Jono Brauer (born 1981), Australian Olympic skier * Max Brauer (1887–1973), German politician; First Mayor of Hamburg * Michael Brauer (contemporary), American audio engineer * Rich Brauer (born 1954), American politician from Illinois; state legislator since 2003 * Richard Brauer (1901–1977), German-American mathematician * Richard H. W. Brauer (contemporary), American art museum director; eponym of the Bra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (group Theory)
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 has th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Form
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to a fixed field , such as the real or complex numbers, and one speaks of a quadratic form over . If K=\mathbb R, and the quadratic form takes zero only when all variables are simultaneously zero, then it is a definite quadratic form, otherwise it is an isotropic quadratic form. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric, second fundamental form), differential topology ( intersection forms of four-manifolds), and Lie theory (the Killing form). Quadratic forms are not to be confused with a quadratic equation, which has only one variable and includes terms of degree two or less. A quadratic form is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]