The RBMK (russian: реактор большой мощности канальный, РБМК; ''reaktor bolshoy moshchnosti kanalnyy'', "high-power channel-type reactor") is a class of
graphite-moderated nuclear power reactor
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from ...
designed and built by the
Soviet Union
The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen national ...
. The name refers to its design where, instead of a large steel
pressure vessel
A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.
Construction methods and materials may be chosen to suit the pressure application, and will depend on the size o ...
surrounding the entire core, the core is surrounded by a cylindrical annular steel tank inside a concrete vault and each fuel assembly is enclosed in an individual 8 cm (inner) diameter pipe (called a "technological channel"). The channels also contain the coolant, and are surrounded by graphite.
The RBMK is an early
Generation II reactor
A generation II reactor is a design classification for a nuclear reactor, and refers to the class of commercial reactors built until the end of the 1990s. Prototypical and older versions of PWR, CANDU, BWR, AGR, RBMK and VVER are among them.
...
and the oldest commercial reactor design still in wide operation. Certain aspects of the original RBMK reactor design, such as the large positive
void coefficient
In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
, the 'positive scram effect' of the control rods
and instability at low power levels, contributed to the 1986
Chernobyl disaster
The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian SSR in the Soviet Union. It is one of only two nuc ...
, in which an RBMK experienced an uncontrolled
nuclear chain reaction
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series of these reactions. The specific nu ...
, leading to a steam and hydrogen explosion, large fire, and subsequent
core meltdown
A nuclear meltdown (core meltdown, core melt accident, meltdown or partial core melt) is a severe nuclear reactor accident that results in core damage from overheating. The term ''nuclear meltdown'' is not officially defined by the Internation ...
. Radioactivity was released over a large portion of Europe. The disaster prompted worldwide calls for the reactors to be completely decommissioned; however, there is still considerable reliance on RBMK facilities for power in Russia. Most of the flaws in the design of RBMK-1000 reactors were corrected after the Chernobyl accident and a dozen reactors have since been operating without any serious incidents for over thirty years. While nine RBMK blocks under construction were cancelled after the
Chernobyl disaster
The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian SSR in the Soviet Union. It is one of only two nuc ...
, and the last of three remaining RBMK blocks at the
Chernobyl Nuclear Power Plant
The Chernobyl Nuclear Power Plant (ChNPP; ; ), is a nuclear power plant undergoing decommissioning. ChNPP is located near the abandoned city of Pripyat in northern Ukraine northwest of the city of Chernobyl, from the Belarus–Ukraine border, ...
was shut down in 2000, as of December 2021 there were still 8 RBMK reactors and three small
EGP-6 The EGP-6 is a Russian small nuclear reactor design. It is a scaled down version of the RBMK design. As the RBMK, the EGP-6 uses water for cooling and graphite as a neutron moderator. EGP is a Russian acronym but translated into English stand for P ...
graphite moderated
light-water reactor
The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reacto ...
s operating in Russia,
though all have been retrofitted with a number of safety updates. Only two RBMK blocks were started after 1986:
Ignalina-2 and
Smolensk-3.
History
The RBMK was the culmination of the
Soviet nuclear power At its peak in 1982, nuclear power in the Soviet Union accounted for 6.5% of total electricity consumption and the total nuclear capacity installed was 18 GW. However, nuclear power within the Soviet Union declined severely as a result of the 1986 ...
program to produce a water-cooled power reactor with dual-use potential based on their graphite-moderated
plutonium
Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
production military reactors. The first of these,
Obninsk AM-1 ("Атом Мирный", ''Atom Mirny'', Russian for "
Atoms for Peace
"Atoms for Peace" was the title of a speech delivered by U.S. President Dwight D. Eisenhower to the UN General Assembly in New York City on December 8, 1953.
The United States then launched an "Atoms for Peace" program that supplied equipment ...
") generated 5
MW of electricity from 30 MW thermal power, and supplied
Obninsk
Obninsk (russian: О́бнинск) is a city in Kaluga Oblast, Russia, located on the bank of the Protva River southwest of Moscow and northeast of Kaluga. Population:
History
The history of Obninsk began in 1945 when the First Research In ...
from 1954 until 1959. Subsequent prototypes were the and both at
Beloyarsk Nuclear Power Station
The Beloyarsk Nuclear Power Station (NPS; russian: Белоярская атомная электростанция им. И. В. Курчатова []) was the third of the Soviet Union, Soviet Union's nuclear plants. It is situated by Zarechny, ...
.
By using a minimalist design that used water, regular (light) water for cooling and graphite for
moderation
Moderation is the process of eliminating or lessening extremes. It is used to ensure normality throughout the medium on which it is being conducted. Common uses of moderation include:
*Ensuring consistency and accuracy in the marking of stud ...
, it was possible to use fuel with a lower enrichment (1.8%
enriched uranium
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 ...
instead of considerably more expensive 4% enrichment). This allowed for an extraordinarily large and powerful reactor that could be built rapidly, largely out of parts fabricated on-site instead of by specialized factories. The initial 1000 MWe design also left room for development into yet more powerful reactors. For example, the RBMK reactors at the
Ignalina Nuclear Power Plant
The Ignalina Nuclear Power Plant ( lt, Ignalinos atominė elektrinė, IAE) is a decommissioned two-unit RBMK-1500 nuclear power station in Visaginas Municipality, Lithuania. It was named after the nearby city of Ignalina. Due to the plant's sim ...
in Lithuania were rated at 1500 MWe each, a very large size for the time and even for the early 21st century. For comparison, the
EPR has a net electric nameplate capacity of 1600 MW (4500 MW
thermal) and is among the most powerful reactor types ever built.
The RBMK-1000's design was finalized in 1968. At that time it was the world's largest nuclear reactor design, surpassing western designs and
the
VVER
The water-water energetic reactor (WWER), or VVER (from russian: водо-водяной энергетический реактор; transliterates as ; ''water-water power reactor'') is a series of pressurized water reactor designs originally de ...
(an earlier Soviet PWR reactor design) in power output and physical size, being 20 times larger by volume than contemporary western reactors. Similarly to
CANDU
The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
reactors it could be produced without the specialized industry required by the large and thick-walled
reactor pressure vessel
A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core.
Classification of nuclear power reactors
Russian Soviet era RBMK reactors have each fuel a ...
s such as those used by VVER reactors, thus increasing the number of factories capable of manufacturing RBMK reactor components. No prototypes of the RBMK were built; it was put directly into mass production.
The RBMK was proclaimed by some as the national reactor of the Soviet Union, probably due to nationalism because of its unique design, large size and power output and especially since the VVER was called the American reactor by its detractors in the
Soviet Union
The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen national ...
, since its design is more similar to that of western PWR reactors. A top-secret invention patent for the RBMK design was filed by
Anatoly Aleksandrov from the
Kurchatov Institute
The Kurchatov Institute (russian: Национальный исследовательский центр «Курчатовский Институт», 'National Research Centre "Kurchatov Institute) is Russia's leading research and developmen ...
of Atomic Energy, who personally took credit for the design of the reactor, with the Soviet patent office. Because a
containment building
A containment building is a reinforced steel, concrete or lead structure enclosing a nuclear reactor. It is designed, in any emergency, to contain the escape of radioactive steam or gas to a maximum pressure in the range of . The containment i ...
would have needed to be very large and thus expensive (doubling the cost of each unit) due to the large size of the RBMK, it was originally omitted from the design. It was argued by its designers that the RBMK's strategy of having each fuel assembly in its own channel with flowing cooling water was an acceptable alternative for containment.
The RBMK was mainly designed at the Kurchatov Institute of Atomic Energy and , headed by
Anatoly Aleksandrov and
Nikolai Dollezhal respectively, from 1964 to 1966. The RBMK was favored over the VVER by the Soviet Union due to its ease of manufacture (due to a lack of a large and thick-walled reactor pressure vessel and relatively complex associated steam generators) and its large power output, which would allow the Soviet government to easily meet their
central economic planning
A planned economy is a type of economic system where investment, production and the allocation of capital goods takes place according to economy-wide economic plans and production plans. A planned economy may use centralized, decentralized, parti ...
targets. The flaws in the original RBMK design were recognized by others, including from within the Kurchatov Institute before the first units were built, but the orders for construction of the first RBMK units, which were at Leningrad, had already been issued in 1966 by the Soviet government by the time their concerns reached the
Central Committee of the Communist Party of the Soviet Union
The Central Committee of the Communist Party of the Soviet Union, – TsK KPSS was the executive leadership of the Communist Party of the Soviet Union, acting between sessions of Congress. According to party statutes, the committee direct ...
and the
Soviet Council of Ministers
The Council of Ministers of the Union of Soviet Socialist Republics ( rus, Совет министров СССР, r=Sovet Ministrov SSSR, p=sɐˈvʲet mʲɪˈnʲistrəf ɛsɛsɛˈsɛr; sometimes abbreviated to ''Sovmin'' or referred to as the '' ...
. This prompted a sudden overhaul of the RBMK. Plutonium production in an RBMK would have been achieved by operating the reactor under special thermal parameters, but this capability was abandoned early on. This was the design that was finalized in 1968. The redesign did not solve further flaws that were not discovered until years later. Construction of the first RBMK, which was at
Leningrad Nuclear Power Plant
Leningrad Nuclear Power Plant (russian: Ленинградская атомная электростанция; Ленинградская АЭС ''Leningradskaya atomnaya elektrostantsiya; Leningradskaya AES'' ()) is a nuclear power plant loca ...
, began in 1970. Leningrad unit 1 opened in 1973.
At Leningrad it was discovered that the RBMK, due to its high positive void coefficient, became harder to control as the uranium fuel was consumed or burned up, becoming unpredictable by the time it was shut down after three years for maintenance. This made controlling the RBMK a very laborious, mentally and physically demanding task requiring the timely adjustment of dozens of parameters every minute, around the clock, constantly wearing out switches such as those used for the control rods and causing operators to sweat. The enrichment percentage was thus increased to 2.0%, up from 1.8% to alleviate these issues. The RBMK was considered by some in the
Soviet Union
The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen national ...
to be already obsolete shortly after the commissioning of Chernobyl unit 1. Aleksandrov and Dollezhal did not investigate further or even deeply understand the problems in the RBMK, and the void coefficient was not analyzed in the manuals for the reactor. Engineers at Chernobyl unit 1 had to create solutions to many of the RBMK's flaws such as a lack of protection against no feedwater supply. Leningrad and Chernobyl units 1 both had partial meltdowns that were treated (alongside other nuclear accidents at power plants) as state secrets and so were unknown even to other workers at those same plants.
By 1980 NIKIET realized, after completing a confidential study, that accidents with the RBMK were likely even during normal operation, but no action was taken to correct the RBMK’s flaws. Instead, manuals were revised, which was believed to be enough to ensure safe operation as long as they were followed closely. However, the manuals were vague and Soviet power plant staff already had a habit of bending the rules in order to meet economic targets, despite inadequate or malfunctioning equipment. Crucially, it was not made clear that a number of control rods had to stay in the reactor at all times in order to protect against an accident, as loosely articulated by the Operational Reactivity Margin (ORM) parameter.
An ORM
chart recorder
A chart recorder is an electromechanical device that records an electrical or mechanical input trend onto a piece of paper (the chart). Chart recorders may record several inputs using different color pens and may record onto strip charts or circu ...
and display were added to RBMK control rooms after the Chernobyl disaster.
A 45-year lifetime is envisaged for many of the units, after mid-life refurbishment.
Reactor design and performance
Reactor vessel, moderator and shielding
The reactor pit or vault is made of
reinforced concrete
Reinforced concrete (RC), also called reinforced cement concrete (RCC) and ferroconcrete, is a composite material in which concrete's relatively low tensile strength and ductility are compensated for by the inclusion of reinforcement having hig ...
and has dimensions 21.6m × 21.6m × 25.5m. It houses the vessel of the reactor, which is annular, made of an inner and outer cylindrical wall and top and bottom metal plates that cover the space between the inner and outer walls, without covering the space surrounded by the vessel.
The reactor vessel is an annular steel cylinder with hollow walls and pressurized with nitrogen gas, with an inner diameter and height of 14.52m × 9.7m, and a wall thickness of 16mm. In order to absorb axial
thermal expansion
Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions.
Temperature is a monotonic function of the average molecular kinetic ...
loads, it is equipped with two
bellows compensators, one on the top and another on the bottom, in the spaces between the inner and outer walls.
The vessel surrounds the graphite core block stack, which serves as moderator. The graphite stack is kept in a helium-nitrogen mixture for providing an
inert atmosphere for the graphite, preventing it from potential fires and for excess heat transfer from the graphite to the coolant channels.
The moderator blocks are made of
nuclear graphite
Nuclear graphite is any grade of graphite, usually synthetic graphite, manufactured for use as a moderator or reflector within a nuclear reactor. Graphite is an important material for the construction of both historical and modern nuclear reacto ...
the dimensions of which are 25cm × 25cm on the plane perpendicular to the channels and with several longitudinal dimensions of between 20cm and 60cm depending on the location in the stack. There are holes of 11.4cm diameter through the longitudinal axis of the blocks for the fuel and control channels. The blocks are stacked, surrounded by the reactor vessel into a cylindrical core with a diameter and height of 14m × 8m.
The maximum allowed temperature of the graphite is up to 730°C.
The reactor has an active core region 11.8 meters in diameter by 7 in height. There are 1700 tons of graphite blocks in an RBMK-1000 reactor.
The pressurized nitrogen in the vessel prevents the escape of the helium-nitrogen mixture used to cool the graphite stack.
The reactor vessel has on its outer side an integral cylindrical annular water tank, a welded structure with 3cm thick walls, an inner diameter of 16.6m and an outer diameter of 19m, internally divided to 16 vertical compartments. The water is supplied to the compartments from the bottom and removed from the top; the water can be used for emergency reactor cooling. The tank contains thermocouples for sensing the water temperature and
ion chamber
The ionization chamber is the simplest type of gas-filled radiation detector, and is widely used for the detection and measurement of certain types of ionizing radiation, including X-rays, gamma rays, and beta particles. Conventionally, the term ...
s for monitoring the reactor power.
The tank, along with an annular sand layer between the outer side of the tank and inner side of the pit,
and the relatively thick concrete of the reactor pit serve as lateral biological shields.
The top of the reactor is covered by the upper biological shield (UBS), also called "Schema E", or, after the explosion (of Chernobyl Reactor 4), ''Elena''. The UBS is a cylindrical disc of 3m x 17m in size and 2000 tons in weight.
It is penetrated by
standpipes for fuel and control channel assemblies. The top and bottom are covered with 4cm thick steel plates, welded to be helium-tight, and additionally joined by structural supports. The space between the plates and pipes is filled with
serpentinite
Serpentinite is a rock composed predominantly of one or more serpentine group minerals, the name originating from the similarity of the texture of the rock to that of the skin of a snake. Serpentinite has been called ''serpentine'' or ''ser ...
,
a rock containing significant amounts of
bound water In hydrology, bound water, is an extremely thin layer of water surrounding mineral surfaces.
Water molecules have a strong electrical polarity, meaning that there is a very strong positive charge on one side of the molecule and a strong negative ch ...
. The serpentinite provides the radiation shielding of the biological shield and was applied as a special concrete mixture. The disk is supported on 16 rollers, located on the upper side of the reinforced cylindrical water tank. The structure of the UBS supports the fuel and control channels, the floor above the reactor in the central hall, and the steam-water pipes.
Below the bottom of the reactor core there is the lower biological shield (LBS), similar to the UBS, but only 2m x 14.5m in size. It is penetrated by the tubes for the lower ends of the pressure channels and carries the weight of the graphite stack and the coolant inlet piping. A steel structure, two heavy plates intersecting in right angle under the center of the LBS and welded to the LBS, supports the LBS and transfers the mechanical load to the building.
Above the UBS, there is a space with upper channel piping and instrumentation and control (I&C) or control and monitoring cabling. Above that is Assembly 11, made up of the upper shield cover or channel covers. Their top surfaces form part of the floor of the reactor hall and serve as part of the biological shield and for thermal insulation of the reactor space. They consist of serpentinite concrete blocks that cover individual removable steel-graphite plugs, located over the tops of the channels, forming what resembles a circle with a grid pattern.
The floor above the reactor is thus known by RBMK plant workers as ''pyatachok'', referring to the five-kopeck coin.
There is one cover (lid/block) per plug, and one plug per channel.
Fuel channels
The fuel channels consist of welded
zircaloy
Zirconium alloys are solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the ...
pressure tubes 8cm in inner diameter with 4mm thick walls, led through the channels in the center of the graphite
moderator blocks. The top and bottom parts of the tubes are made of
stainless steel
Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's corros ...
, and joined with the central zircaloy segment with zirconium-steel alloy couplings. The pressure tube is held in the graphite stack channels with two alternating types of 20mm high split graphite rings; one is in direct contact with the tube and has 1.5mm clearance to the graphite stack, the other one is directly touching the graphite stack and has 1.3mm clearance to the tube; this assembly reduces transfer of mechanical loads caused by
neutron-induced swelling
Neutron-induced swelling is the increase of volume and decrease of density of materials subjected to intense neutron radiation. Neutrons impacting the material's lattice rearrange its atoms, causing buildup of dislocations, voids, and Wigner ener ...
, thermal expansion of the blocks, and other factors to the pressure tube, while facilitating heat transfer from the graphite blocks. The pressure tubes are welded to the top and bottom plates of the reactor vessel.
While most of the heat energy from the fission process is generated in the fuel rods, approximately 5.5% is deposited in the graphite blocks as they moderate the
fast neutrons
The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
formed from fission. This energy must be removed to avoid overheating the graphite. About 80–85% of the energy deposited in the graphite is removed by the fuel rod coolant channels, using conduction via the graphite rings. The rest of the graphite heat is removed from the control rod channels by forced gas circulation through the gas circuit.
There are 1693 fuel channels and 170 control rod channels in the first generation RBMK reactor cores. Second generation reactor cores (such as Kursk and Chernobyl 3/4) have 1661 fuel channels and 211 control rod channels.
The fuel assembly is suspended in the fuel channel on a bracket, with a seal plug. The seal plug has a simple design, to facilitate its removal and installation by the remotely controlled
online refueling In nuclear power technology, online refuelling is a technique for changing the fuel of a nuclear reactor while the reactor is critical mass, critical. This allows the reactor to continue to generate electricity during routine refuelling, and theref ...
machine.
The fuel channels may, instead of fuel, contain fixed neutron absorbers, or be filled completely with cooling water. They may also contain silicon-filled tubes in place of a fuel assembly, for the purpose of
doping for semiconductors. These channels could be identified by their corresponding servo readers, which would be blocked and replaced with the atomic symbol for silicon.
The small clearance between the pressure channel and the graphite block makes the graphite core susceptible to damage. If a pressure channel deforms, e.g. by too high an internal pressure, the deformation can cause significant pressure loads on the graphite blocks and lead to damage.
Fuel
The fuel pellets are made of
uranium dioxide
Uranium dioxide or uranium(IV) oxide (), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear rea ...
powder,
sintered
Clinker nodules produced by sintering
Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction.
Sintering happens as part of a manufacturing ...
with a suitable binder into pellets 11.5mm in diameter and 15mm long. The material may contain added
europium oxide Europium oxide is a compound from the two elements europium and oxygen.
Europium oxide may refer to:
* Europium(II) oxide (europium monoxide, EuO) a magnetic semiconductor.
* Europium(III) oxide (europium sesquioxide, Eu2O3), the most common ...
as a burnable
nuclear poison
In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable eff ...
to lower the reactivity differences between a new and partially spent fuel assembly. To reduce thermal expansion issues and interaction with the cladding, the pellets have hemispherical indentations. A 2mm hole through the axis of the pellet serves to reduce the temperature in the center of the pellet and facilitates removal of gaseous fission products. The
enrichment level in 1980 was 2% (0.4% for the end pellets of the assemblies). Maximum allowable temperature of the fuel pellet is 2100°C.
The fuel rods are
zircaloy
Zirconium alloys are solid solutions of zirconium or other metals, a common subgroup having the trade mark Zircaloy. Zirconium has very low absorption cross-section of thermal neutrons, high hardness, ductility and corrosion resistance. One of the ...
(1%
niobium
Niobium is a chemical element with chemical symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has sim ...
) tubes 13.6mm in outer diameter, 0.825mm thick. The rods are filled with
helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
at 0.5 MPa and hermetically sealed. Retaining rings help to seat the pellets in the center of the tube and facilitate heat transfer from the pellet to the tube. The pellets are axially held in place by a
spring
Spring(s) may refer to:
Common uses
* Spring (season), a season of the year
* Spring (device), a mechanical device that stores energy
* Spring (hydrology), a natural source of water
* Spring (mathematics), a geometric surface in the shape of a ...
. Each rod contains 3.5kg of fuel pellets. The fuel rods are 3.64m long, with 3.4m of that being the active length. The maximum allowed temperature of a fuel rod is 600°C.
The fuel assemblies consist of two sets ("sub-assemblies") with 18 fuel rods and 1 carrier rod. The fuel rods are arranged along the central carrier rod, which has an outer diameter of 1.3cm. All rods of a fuel assembly are held in place with 10 stainless steel spacers separated by 360mm distance. The two sub-assemblies are joined with a cylinder at the center of the assembly; during the operation of the reactor, this dead space without fuel lowers the neutron flux in the central plane of the reactor. The total mass of uranium in the fuel assembly is 114.7kg. The fuel
burnup
In nuclear power technology, burnup (also known as fuel utilization) is a measure of how much energy is extracted from a primary nuclear fuel source. It is measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per init ...
is 20 MW·d/kg. The total length of the fuel assembly is 10.025m, with 6.862m of the active region.
In addition to the regular fuel assemblies, there are instrumented ones, containing neutron flux detectors in the central carrier. In this case, the rod is replaced with a tube with wall thickness of 2.5mm; and outer diameter of 15mm.
Unlike the rectangular PWR/BWR fuel assemblies or hexagonal VVER fuel assemblies, the RBMK fuel assembly is cylindrical to fit the round pressure channels.
The refueling machine is mounted on a gantry crane and remotely controlled. The fuel assemblies can be replaced without shutting down the reactor, a factor significant for production of
weapon-grade plutonium and, in a civilian context, for better reactor uptime. When a fuel assembly has to be replaced, the machine is positioned above the fuel channel: then it mates to the latter, equalizes pressure within, pulls the rod, and inserts a fresh one. The spent rod is then placed in a cooling pond. The capacity of the refueling machine with the reactor at nominal power level is two fuel assemblies per day, with peak capacity of five per day.
The total amount of fuel under stationary conditions is 192 tons.
The RBMK core has a relatively low power density at least partly due to the 25 cm spacing between channels and thus fuel assemblies.
Control rods
Most of the reactor
control rod
Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing ...
s are inserted from above; 24 shortened rods are inserted from below and are used to augment the axial power distribution control of the core. With the exception of 12 automatic rods, the control rods have a long graphite section at the end, separated by a long telescope (which creates a water-filled space between the graphite and the absorber), and a
boron carbide
Boron carbide (chemical formula approximately B4C) is an extremely hard boron–carbon ceramic, a covalent material used in tank armor, bulletproof vests, engine sabotage powders,
as well as numerous industrial applications. With a Vickers hard ...
neutron absorber section. The role of the graphite section, known as "displacer", is to enhance the difference between the neutron flux attenuation levels of inserted and retracted rods, as the graphite displaces water that would otherwise act as a neutron absorber, although much weaker than boron carbide; a control rod channel filled with graphite absorbs fewer neutrons than when filled with water, so the difference between inserted and retracted control rod is increased. When the control rod is fully retracted, the graphite displacer is located in the middle of the core height, with 1.25 m of water at each of its ends. The displacement of water in the lower 1.25 m of the core as the rod moves down could cause a local increase of reactivity in the bottom of the core as the graphite part of the control rod passes that section. This "positive scram" effect was discovered in 1983 at the
Ignalina Nuclear Power Plant
The Ignalina Nuclear Power Plant ( lt, Ignalinos atominė elektrinė, IAE) is a decommissioned two-unit RBMK-1500 nuclear power station in Visaginas Municipality, Lithuania. It was named after the nearby city of Ignalina. Due to the plant's sim ...
. The control rod channels are cooled by an independent water circuit and kept at . The narrow space between the rod and its channel hinders water flow around the rods during their movement and acts as a fluid damper, which is the primary cause of their slow insertion time (nominally 18–21 seconds for the reactor control and protection system rods, or about 0.4 m/s). After the Chernobyl disaster, the control rod servos on other RBMK reactors were exchanged to allow faster rod movements, and even faster movement was achieved by cooling of the control rod channels by a thin layer of water between an inner jacket and the Zircaloy tube of the channel while letting the rods themselves move in gas.
The division of the control rods between manual and emergency protection groups was arbitrary; the rods could be reassigned from one system to another during reactor operation without technical or organizational problems.
Additional static boron-based absorbers are inserted into the core when it is loaded with fresh fuel. About 240 absorbers are added during initial core loading. These absorbers are gradually removed with increasing burnup. The reactor's void coefficient depends on the core content; it ranges from negative with all the initial absorbers to positive when they are all removed.
The normal reactivity margin is 43–48 control rods.
Gas circuit
The reactor operates in a
helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
–
nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
atmosphere (70–90% He, 10–30% N
2 by volume).
The gas circuit is composed of a
compressor
A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.
Compressors are similar to pumps: both increase the pressure on a fluid and both can transp ...
,
aerosol
An aerosol is a suspension (chemistry), suspension of fine solid particles or liquid Drop (liquid), droplets in air or another gas. Aerosols can be natural or Human impact on the environment, anthropogenic. Examples of natural aerosols are fog o ...
and iodine filters, adsorber for
carbon dioxide
Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
,
carbon monoxide
Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
, and
ammonia
Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous was ...
, a holding tank for allowing the gaseous radioactive products to decay before being discharged, an aerosol filter to remove solid decay products, and a ventilator stack, the iconic chimney above the space between reactors in second generation RBMKs such as Kursk and Chernobyl 3/4 or some distance away from the reactors in first generation RBMKs such as Kursk and Chernobyl 1/2. The gas is injected to the core stack from the bottom in a low flow rate, and exits from the standpipe of each channel via an individual pipe. The moisture and temperature of the outlet gas is monitored; an increase of them is an indicator of a coolant leak.
A single gas circuit serves two RBMK-1000 reactors or a single RBMK-1500; RBMK reactors were always built in pairs. The gas circuit is housed between two reactors in second generation RBMKs such as Chernobyl 3/4, Kursk 3/4 and Smolensk 1-4.
Primary coolant circuit
The reactor has two independent cooling circuits, each having four main circulating pumps (three operating, one standby) that service one half of the reactor. The cooling water is fed to the reactor through lower water lines to a common pressure header (one for each cooling circuit), which is split to 22 group distribution headers, each feeding 38–41 pressure channels through the core, where the coolant boils. The mixture of steam and water is led by the upper steam lines, one for each pressure channel, from the reactor top to the
steam separator
A steam separator, sometimes referred to as a moisture separator or steam drier, is a device for separating water droplets from steam. The simplest type of steam separator is the steam dome on a steam locomotive. Stationary boilers and nuclear re ...
s, pairs of thick horizontal drums located in side compartments above the reactor top; each has diameter, length, wall thickness of , and weighs .
Steam, with
steam quality
Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporizatio ...
of about 15%, is taken from the top of the separators by two steam collectors per separator, combined, and led to two
turbogenerator
A turbo generator is an electric generator connected to the shaft of a steam turbine or gas turbine for the generation of electric power. Large steam-powered turbo generators provide the majority of the world's electricity and are also use ...
s in the turbine hall, then to
condensers __NOTOC__
Condenser may refer to:
Heat transfer
* Condenser (heat transfer), a device or unit used to condense vapor into liquid. Specific types include:
** HVAC air coils
** Condenser (laboratory), a range of laboratory glassware used to remove ...
, reheated to , and pumped by the
condensate pump A condensate pump is a specific type of pump used to pump the condensate (water) produced in an HVAC (heating or cooling), refrigeration, condensing boiler furnace, or steam system.
Applications
Condensate pumps may be used to pump the condensate ...
s to
deaerator
A deaerator is a device that removes oxygen and other dissolved gases from liquids and pumpable compounds.
History
Before 1881, feed water heaters were used for marine applications. Two sister ships Olympic and Titanic (1912) had contact feed h ...
s, where remains of gaseous phase and corrosion-inducing gases are removed. The resulting
feedwater
Boiler feedwater is an essential part of boiler operations. The feed water is put into the steam drum from a feed pump. In the steam drum the feed water is then turned into steam from the heat. After the steam is used it is then dumped to the ma ...
is led to the steam separators by
feedwater pumps
A boiler feedwater pump is a specific type of pump used to pump feedwater into a steam boiler. The water may be freshly supplied or returning condensate produced as a result of the condensation of the steam produced by the boiler. These pumps ar ...
and mixed with water from them at their outlets. From the bottom of the steam separators, the feedwater is led by 12 downpipes (from each separator) to the suction headers of the main circulation pumps, and back into the reactor. There is an
ion exchange
Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, ...
system included in the loop to remove impurities from the feedwater.
The turbine consists of one high-pressure rotor (cylinder) and four low-pressure ones. Five low-pressure separators-preheaters are used to heat steam with fresh steam before being fed to the next stage of the turbine. The uncondensed steam is fed into a condenser, mixed with condensate from the separators, fed by the first-stage condensate pump to a chemical (ion-exchange) purifier, then by a second-stage condensate pump to four deaerators where dissolved and entrained gases are removed; deaerators also serve as storage tanks for feedwater. From the deaerators, the water is pumped through filters and into the bottom parts of the steam separator drums.
The main circulating pumps have the capacity of 5,500–12,000 m
3/h and are powered by 6 kV
electric motor
An electric motor is an Electric machine, electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a Electromagneti ...
s. The normal coolant flow is 8000 m
3/h per pump; this is throttled down by control valves to 6000–7000 m
3/h when the reactor power is below 500 MWt. Each pump has a flow control valve and a backflow preventing
check valve
A check valve, non-return valve, reflux valve, retention valve, foot valve, or one-way valve is a valve that normally allows fluid (liquid or gas) to flow through it in only one direction.
Check valves are two-port valves, meaning they have t ...
on the outlet, and
shutoff valves on both inlet and outlet. Each of the pressure channels in the core has its own
flow control valve
A flow control valve regulates the flow or pressure of a fluid. Control valves normally respond to signals generated by independent devices such as flow meters or temperature gauges.
Operation
Control valves are normally fitted with actuators a ...
so that the temperature distribution in the reactor core can be optimized. Each channel has a ball type
flow meter
Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below:
* a) Obstruction type (differential pressure or variable area) ...
.
The nominal coolant flow through the reactor is 46,000–48,000 m
3/h. The steam flow at full power is /h.
The nominal temperature of the coolant at the inlet of the reactor is about and the outlet temperature , at pressure in the drum separator and reactor of .
The pressure and the inlet temperature determine the height at which the boiling begins in the reactor; if the coolant temperature is not sufficiently below its boiling point at the system pressure, the boiling starts at the very bottom part of the reactor instead of its higher parts. With few absorbers in the reactor core, such as during the Chernobyl accident, the positive
void coefficient
In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
of the reactor makes the reactor very sensitive to the feedwater temperature. Bubbles of boiling water lead to increased power, which in turn increases the formation of bubbles.
If the coolant temperature is too close to its boiling point,
cavitation
Cavitation is a phenomenon in which the static pressure of a liquid reduces to below the liquid's vapour pressure, leading to the formation of small vapor-filled cavities in the liquid. When subjected to higher pressure, these cavities, cal ...
can occur in the pumps and their operation can become erratic or even stop entirely. The feedwater temperature is dependent on the steam production; the steam phase portion is led to the turbines and condensers and returns significantly cooler () than the water returning directly from the steam separator (284 °C). At low reactor power, therefore, the inlet temperature may become dangerously high. The water is kept below the
saturation temperature
The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.
The boiling point of a liquid varies depending upon the surrounding envir ...
to prevent
film boiling
The Leidenfrost effect is a physical phenomenon in which a liquid, close to a surface that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly. Because of this re ...
and the associated drop in heat transfer rate.
The reactor is
tripped in cases of high or low water level in the steam separators (with two selectable low-level thresholds); high steam pressure; low feedwater flow; loss of two main coolant pumps on either side. These trips can be manually disabled.
The level of water in the steam separators, the percentage of steam in the reactor pressure tubes, the level at which the water begins to boil in the reactor core, the neutron flux and power distribution in the reactor, and the feedwater flow through the core have to be carefully controlled. The level of water in the steam separator is mainly controlled by the feedwater supply, with the deaerator tanks serving as a water reservoir.
The maximum allowed heat-up rate of the reactor and the coolant is /h; the maximum cool-down rate is /h.
ECCS
The reactor is equipped with an emergency core cooling system (ECCS), consisting of dedicated water reserve tank, hydraulic accumulators, and pumps. ECCS piping is integrated with the normal reactor cooling system. The ECCS has three systems, connected to the coolant system headers. In case of damage, the first ECCS subsystem provides cooling for up to 100 seconds to the damaged half of the coolant circuit (the other half is cooled by the main circulation pumps), and the other two subsystems then handle long-term cooling of the reactor.
The short-term ECCS subsystem consists of two groups of six accumulator tanks, containing water blanketed with nitrogen under pressure of , connected by fast-acting valves to the reactor. Each group can supply 50% of the maximum coolant flow to the damaged half of the reactor. The third group is a set of electrical pumps drawing water from the deaerators. The short-term pumps can be powered by the spindown of the main turbogenerators.
ECCS for long-term cooling of the damaged circuit consists of three pairs of electrical pumps, drawing water from the pressure suppression pools; the water is cooled by the plant service water by means of heat exchangers in the suction lines. Each pair is able to supply half of the maximum coolant flow. ECCS for long-term cooling of the intact circuit consists of three separate pumps drawing water from the condensate storage tanks, each able to supply half of the maximum flow. The ECCS pumps are powered from the essential internal 6 kV lines, backed up by diesel generators. Some valves that require uninterrupted power are also backed up by batteries.
Reactor control/supervision systems
The distribution of
power density
Power density is the amount of power (time rate of energy transfer) per unit volume.
In energy transformers including batteries, fuel cells, motors, power supply units etc., power density refers to a volume, where it is often called volume p ...
in the reactor is measured by
ionization chamber
The ionization chamber is the simplest type of gas-filled radiation detector, and is widely used for the detection and measurement of certain types of ionizing radiation, including X-rays, gamma rays, and beta particles. Conventionally, the term ...
s located inside and outside the core. The physical power density distribution control system (PPDDCS) has sensors inside the core; the reactor control and protection system (RCPS) uses sensors in the core and in the lateral biological shield tank. The external sensors in the tank are located around the reactor middle plane, therefore do not indicate axial power distribution nor information about the power in the central part of the core. There are over 100 radial and 12 axial power distribution monitors, employing self-powered detectors. Reactivity meters and removable startup chambers are used for monitoring of reactor startup. Total reactor power is recorded as the sum of the currents of the lateral ionization chambers. The moisture and temperature of the gas circulating in the channels is monitored by the pressure tube integrity monitoring system.
The PPDDCS and RCPS are supposed to complement each other. The RCPS system consists of 211 movable control rods. Both systems, however, have deficiencies, most noticeably at low reactor power levels. The PPDDCS is designed to maintain reactor power density distribution between 10 and 120% of nominal levels and to control the total reactor power between 5 and 120% of nominal levels. The LAC-LAP (local automatic control and local automatic protection) RPCS subsystems rely on ionization chambers inside the reactor and are active at power levels above 10%. Below those levels, the automatic systems are disabled and the in-core sensors are not accessible. Without the automatic systems and relying only on the lateral ionization chambers, control of the reactor becomes very difficult; the operators do not have sufficient data to control the reactor reliably and have to rely on their intuition. During startup of a reactor with a poison-free core this lack of information can be manageable because the reactor behaves predictably, but a non-uniformly poisoned core can cause large nonhomogenities of power distribution, with potentially catastrophic results.
The reactor emergency protection system (EPS) was designed to shut down the reactor when its operational parameters are exceeded. The design accounted for steam collapse in the core when the fuel element temperature falls below 265 °C, coolant vaporization in fuel channels in cold reactor state, and sticking of some emergency protection rods. However, the slow insertion speed of the control rods, together with their design causing localized positive reactivity as the displacer moves through the lower part of the core, created a number of possible situations where initiation of the EPS could itself cause or aggravate a reactor runaway.
The SKALA or SCALA computer system for calculation of the reactivity margin was collecting data from about 4,000 sources. Its purpose was to assist the operator with steady-state control of the reactor. Ten to fifteen minutes were required to cycle through all the measurements and calculate the results. SKALA could not control the reactor, instead it only made recommendations to the operators, and it used 1960s computer technology.
The operators could disable some safety systems, reset or suppress some alarm signals, and bypass automatic
scram
A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor ...
, by attaching
patch cable
A patch cable, patch cord or patch lead is an electrical or optical cable used to connect ("patch in") one electronic or optical device to another for signal routing. Devices of different types (e.g., a switch connected to a computer, or a sw ...
s to accessible terminals. This practice was allowed under some circumstances.
The reactor is equipped with a fuel rod leak detector. A
scintillation counter
A scintillation counter is an instrument for detecting and measuring ionizing radiation by using the excitation effect of incident radiation on a scintillating material, and detecting the resultant light pulses.
It consists of a scintillator w ...
detector, sensitive to energies of short-lived fission products, is mounted on a special dolly and moved over the outlets of the fuel channels, issuing an alert if increased radioactivity is detected in the steam-water flow.
In RBMK control rooms there are two large panels or mimic displays representing a top view of the reactor. One display is made up mostly or completely (in first generation RBMKs) of colored dials or rod position indicators: these dials represent the position of the control rods inside the reactor and the color of the housing of the dials matches that of the control rods, whose colors correspond to their function, for example, red for automatic control rods. The other display is a core map or core channel cartogram and is circular, is made of tiles, and represents every channel on the reactor. Each tile is made of a single light cover with a channel number and an incandescent light bulb, and each light bulb illuminates to represent out-of-spec (higher or lower than normal) channel parameters. Operators have to type in the number of the affected channel(s) and then view the instruments to find exactly what parameters are out of spec. The core map represented information from the SKALA computer. Each unit had its own computer housed in a separate room. The control room also has chart or trend recorders. Some RBMK control rooms have
been upgraded with
video wall
A video wall is a special multi-monitor setup that consists of multiple computer monitors, video projectors, or television sets tiled together contiguously or overlapped in order to form one large screen. Typical display technologies include L ...
s that replace the mimic displays and most chart recorders and eliminate the need to type in channel numbers and instead operators lay a cursor over a (now representative) tile to reveal its parameters that are shown on the lower side of the video wall. The control room is located below the floor of the deaerator room, and both rooms are in the space between the reactor and turbine buildings.
Containment
The RBMK design was built primarily to be powerful, quick to build and easy to maintain. Full physical containment structures for each reactor would have more than doubled the cost and construction time of each plant, and since the design had been certified by the Soviet nuclear science ministry as inherently safe when operated within established parameters, the Soviet authorities assumed proper adherence to doctrine by workers would make any accident impossible. Additionally, RBMK reactors were designed to allow fuel rods to be changed at full power without shutting down (as in the pressurized heavy water
CANDU
The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
reactor), both for refueling and for
plutonium
Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
production (for
nuclear weapon
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
s). This required large cranes above the core. As the RBMK reactor core is very tall (about ), the cost and difficulty of building a heavy containment structure prevented the building of additional emergency containment structures for pipes on top of the reactor core. In the
Chernobyl accident
The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian SSR in the Soviet Union. It is one of only two nu ...
, the pressure rose to levels high enough to blow the top off the reactor, breaking open the fuel channels in the process and starting a massive fire when air contacted the superheated graphite core. After the Chernobyl accident, some RBMK reactors were retrofitted with a partial containment structure (in lieu of a full
containment building
A containment building is a reinforced steel, concrete or lead structure enclosing a nuclear reactor. It is designed, in any emergency, to contain the escape of radioactive steam or gas to a maximum pressure in the range of . The containment i ...
), which surround the fuel channels with water jackets in order to capture any radioactive particles released.
The bottom part of the reactor is enclosed in a watertight compartment. There is a space between the reactor bottom and the floor. The reactor cavity overpressure protection system consists of steam relief assemblies embedded in the floor and leading to Steam Distributor Headers covered with
rupture disc
A rupture disk, also known as a pressure safety disc, burst disc, bursting disc, or burst diaphragm, is a non-reclosing pressure relief safety device that, in most uses, protects a pressure vessel, equipment or system from overpressurization ...
s and opening into the Steam Distribution Corridor below the reactor, on level +6. The floor of the corridor contains entrances of a large number of vertical pipes, leading to the bottoms of the Pressure Suppression Pools ("bubbler" pools) located on levels +3 and +0. In the event of an accident, which was predicted to be at most a rupture of one or two pressure channels, the steam was to be bubbled through the water and condensed there, reducing the overpressure in the leaktight compartment. The flow capacity of the pipes to the pools limited the protection capacity to simultaneous rupture of two pressure channels; a higher number of failures would cause pressure buildup sufficient to lift the cover plate ("Structure E", after the explosion nicknamed "Elena", not to be confused with the Russian
ELENA reactor
The ELENA reactor is a compact Russian pressurized water reactor (PWR) of 68-kWe generating capacity currently being developed by the Kurchatov Institute. To develop the reactor, techniques were used derived from the construction and operation of ...
), sever the rest of the fuel channels, destroy the control rod insertion system, and potentially also withdraw control rods from the core. The containment was designed to handle failures of the downcomers, pumps, and distribution and inlet of the feedwater. The leaktight compartments around the pumps can withstand overpressure of . The distribution headers and inlets enclosures can handle and are vented via
check valve
A check valve, non-return valve, reflux valve, retention valve, foot valve, or one-way valve is a valve that normally allows fluid (liquid or gas) to flow through it in only one direction.
Check valves are two-port valves, meaning they have t ...
s to the leaktight compartment. The reactor cavity can handle overpressure of and is vented via check valves to the leaktight compartment. The pressure suppression system can handle a failure of one reactor channel, a pump pressure header, or a distribution header. Leaks in the steam piping and separators are not handled, except for maintaining slightly lower pressure in the riser pipe gallery and the steam drum compartment than in the reactor hall. These spaces are also not designed to withstand overpressure. The steam distribution corridor contains
surface condenser
A surface condenser is a water-cooled shell and tube heat exchanger installed to condense exhaust steam from a steam turbine in thermal power stations. These condensers are heat exchangers which convert steam from its gaseous to its liquid state ...
s. The
fire sprinkler system
A fire sprinkler system is an active fire protection method, consisting of a water supply system, providing adequate pressure and flowrate to a water distribution piping system, onto which fire sprinklers are connected. Although historically on ...
s, operating during both accident and normal operation, are fed from the pressure suppression pools through heat exchangers cooled by the plant service water, and cool the air above the pools. Jet coolers are located in the topmost parts of the compartments; their role is to cool the air and remove the steam and radioactive aerosol particles.
Hydrogen removal from the leaktight compartment is performed by removal of /hour of air, its filtration, and discharge into the atmosphere. The air removal is stopped automatically in case of a coolant leak and has to be reinstated manually. Hydrogen is present during normal operation due to leaks of coolant (assumed to be up to per hour).
Other systems
For the nuclear systems described here, the
Chernobyl Nuclear Power Plant
The Chernobyl Nuclear Power Plant (ChNPP; ; ), is a nuclear power plant undergoing decommissioning. ChNPP is located near the abandoned city of Pripyat in northern Ukraine northwest of the city of Chernobyl, from the Belarus–Ukraine border, ...
is used as the example.
Electrical systems
The power plant is connected to the 330 kV and 750 kV
electrical grid
An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of:Kaplan, S. M. (2009). Smart Grid. Electrical Power ...
. The block has two
electrical generator
In electricity generation, a generator is a device that converts motive power (mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas ...
s connected to the 750 kV grid by a single generator transformer. The generators are connected to their common transformer by two switches in series. Between them, the unit transformers are connected to supply power to the power plant's own systems; each generator can therefore be connected to the unit transformer to power the plant, or to the unit transformer and the generator transformer to also feed power to the grid. The 330 kV line is normally not used, and serves as an external power supply, connected by a station transformer to the power plant's electrical systems. The plant can be powered by its own generators, or get power from the 750 kV grid through the generator transformer, or from the 330 kV grid via the station transformer, or from the other power plant block via two reserve
busbar
In electric power distribution, a busbar (also bus bar) is a metallic strip or bar, typically housed inside switchgear, panel boards, and busway enclosures for local high current power distribution. They are also used to connect high volt ...
s. In case of total external power loss, the essential systems can be powered by
diesel generator
A diesel generator (DG) (also known as a diesel Genset) is the combination of a diesel engine with an electric generator (often an alternator) to generate electrical energy. This is a specific case of engine generator. A diesel compression- ...
s. Each unit transformer is connected to two 6 kV main power boards, A and B (e.g. 7A, 7B, 8A, 8B for generators 7 and 8), powering principal non-essential drivers and connected to transformers for the 4 kV main power and the 4 kV reserve busbar. The 7A, 7B, and 8B boards are also connected to the three essential power lines (namely for the coolant pumps), each also having its own diesel generator. In case of a coolant circuit failure with simultaneous loss of external power, the essential power can be supplied by the spinning down turbogenerators for about 45–50 seconds, during which time the diesel generators should start up. The generators are started automatically within 15 seconds at loss of off-site power.
Turbogenerators
The electrical energy is generated by a pair of 500 MW
hydrogen-cooled turbogenerator
A hydrogen-cooled turbo generator is a turbo generator with gaseous hydrogen as a coolant. Hydrogen-cooled turbo generators are designed to provide a low- drag atmosphere and cooling for single-shaft and combined-cycle applications in combination ...
s. These are located in the -long machine hall, adjacent to the reactor building. The
turbine
A turbine ( or ) (from the Greek , ''tyrbē'', or Latin ''turbo'', meaning vortex) is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced by a turbine can be used for generating e ...
s, the venerable five-cylinder K-500-65/3000, are supplied by the
Kharkiv
Kharkiv ( uk, wikt:Харків, Ха́рків, ), also known as Kharkov (russian: Харькoв, ), is the second-largest List of cities in Ukraine, city and List of hromadas of Ukraine, municipality in Ukraine.[electrical generator
In electricity generation, a generator is a device that converts motive power (mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas ...]
s are the TVV-500. The turbine and the generator rotors are mounted on the same shaft; the combined weight of the
rotors is almost and their nominal rotational speed is 3000
rpm
Revolutions per minute (abbreviated rpm, RPM, rev/min, r/min, or with the notation min−1) is a unit of rotational speed or rotational frequency for rotating machines.
Standards
ISO 80000-3:2019 defines a unit of rotation as the dimensionl ...
. The
turbogenerator
A turbo generator is an electric generator connected to the shaft of a steam turbine or gas turbine for the generation of electric power. Large steam-powered turbo generators provide the majority of the world's electricity and are also use ...
is long and its total weight is . The coolant flow for each turbine is /h. The generator produces 20 kV 50 Hz AC power. The generator's stator is cooled by water while its rotor is cooled by
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
. The hydrogen for the generators is manufactured on-site by
electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
.
The design and reliability of the turbines earned them the State Prize of Ukraine for 1979.
The Kharkiv turbine plant (now
Turboatom
UKRAINIAN ENERGY MACHINES JOINT STOCK COMPANY or TURBOATOM ( uk, Турбоатом) is one of the strategic state-owned enterprises of Ukraine, determining to a considerable degree energy and national security of the state. The plant is among t ...
) later developed a new version of the turbine, K-500-65/3000-2, in an attempt to reduce use of valuable metal. The Chernobyl plant was equipped with both types of turbines; Block 4 had the newer ones.
Design variants
RBMK-1500
The primary difference between RBMK-1000 and RBMK-1500 reactors is that the RBMK-1500 is cooled with less water, which adopts a helical laminar flow instead of a purely
laminar flow
In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mi ...
through the channels. The RBMK-1500 also uses less uranium. The helical flow is created by turbulators in the fuel assembly and increases heat removal.
Because of the RBMK's positive void coefficient, the reduced cooling water volume causes a higher power output. As the name suggests, it was designed for an electrical power output of 1500 MW. The only reactors of this type and power output are the ones at
Ignalina Nuclear Power Plant
The Ignalina Nuclear Power Plant ( lt, Ignalinos atominė elektrinė, IAE) is a decommissioned two-unit RBMK-1500 nuclear power station in Visaginas Municipality, Lithuania. It was named after the nearby city of Ignalina. Due to the plant's sim ...
.
RBMK-2000 and RBMK-3600
The RBMK-2000
[Dollezhal N. A., Emelyanov I. Ya. Channel nuclear power reactor. - M .: Atomizdat, 1980. (Доллежаль Н. А., Емельянов И. Я. Канальный ядерный энергетический реактор. — М.: Атомиздат, 1980.)] and RBMK-3600 were designed to produce 2000 and 3600 MW of electrical power respectively. The RBMK-2000 would have had an increased channel diameter and number of fuel rods per fuel assembly while maintaining the same dimensions of the reactor core as the RBMK-1000 and RBMK-1500. The RBMK-3600 presumably similarly to the RBMK-1500 would have added turbulators to the RBMK-2000 design to increase heat removal.
RBMKP-2400
The RBMKP-2400 is rectangular instead of cylindrical, and it was a modular, theoretically infinitely longitudinally expandable design with vertical steam separators, intended to be made in sections at a factory for assembly
in situ
''In situ'' (; often not italicized in English) is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in ...
. It was designed to have a power output of 2400 MWe, and a higher thermal efficiency due to
steam superheating directly in the reactor core in special fuel channels with fuel rods with stainless steel cladding instead of the more common Zircaloy cladding, for a steam outlet temperature of 450°C. No reactor with this power output has ever been built, with the most powerful one currently being as of 2018 the 1750 MWe
EPR.
The development of this design was cancelled in the aftermath of the Chernobyl disaster. An RBMKP-4800 would have had an increased number of evaporating and superheating channels thus increasing power output. Two RBMK-2400s were planned for the .
Design flaws and safety issues
As an early
Generation II reactor
A generation II reactor is a design classification for a nuclear reactor, and refers to the class of commercial reactors built until the end of the 1990s. Prototypical and older versions of PWR, CANDU, BWR, AGR, RBMK and VVER are among them.
...
based on 1950s Soviet technology, the RBMK design was optimized for speed of production over redundancy. It was designed and constructed with several design characteristics that proved dangerously unstable when operated outside their design specifications. The decision to use a graphite core with natural uranium fuel allowed for massive power generation at only a quarter of the expense of
heavy water reactors, which were more maintenance-intensive and required large volumes of expensive
heavy water for startup. However, it also had unexpected negative consequences that would not reveal themselves fully until the 1986 Chernobyl disaster.
High positive void coefficient
Light water (ordinary H
2O) is both a
neutron moderator
In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely mo ...
and a
neutron absorber
In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable eff ...
. This means that not only can it slow down neutrons to velocities in equilibrium with surrounding molecules ("thermalize" them and turn them into low-energy neutrons, known as
thermal neutron
The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s, that are far more likely to interact with the uranium-235 nuclei than the fast neutrons produced by fission initially), but it also absorbs some of them.
In the RBMK series of reactors, light water functions as a coolant, while moderation is mainly carried out by
graphite
Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large ...
. As graphite already moderates neutrons, light water has a lesser effect in slowing them down, but could still absorb them. This means that the reactor's reactivity (adjustable by appropriate neutron-absorbing rods) must take into account the neutrons absorbed by light water.
In the case of vaporisation of water to
steam
Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization ...
, the place occupied by water would be occupied by water vapor, which has a density vastly lower than that of liquid water (the exact number depends on pressure and temperature; at
standard conditions
Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union o ...
, steam is about as dense as liquid water). Because of this lower density (of mass, and consequently of atom nuclei able to absorb neutrons), light water's neutron-absorption capability practically disappears when it boils. This allows more neutrons to fission more U-235 nuclei and thereby increase the reactor power, which leads to higher temperatures that boil even more water, creating a thermal
feedback loop
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled c ...
.
In RBMK reactors, generation of steam in the coolant water would then in practice create a void: a bubble that does not absorb neutrons. The reduction in moderation by light water is irrelevant, as graphite still moderates the neutrons. However, the loss of absorption dramatically alters the balance of neutron production, causing a runaway condition in which more and more neutrons are produced, and their density grows exponentially. Such a condition is called a "positive
void coefficient
In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor ...
", and the RBMK reactor series has the highest positive void coefficient of any commercial reactor ever designed.
A high void coefficient does not necessarily make a reactor inherently unsafe, as some of the fission neutrons are emitted with a delay of seconds or even minutes (post-fission neutron emission from daughter nuclei), and therefore steps can be taken to reduce the fission rate before it becomes too high. This situation, however, does make it considerably harder to control the reactor, especially at low power. Thus, control systems must be very reliable and control-room personnel must be rigorously trained in the peculiarities and limits of the system. Neither of these requirements were in place at Chernobyl: since the reactor's actual design bore the approval stamp of the
Kurchatov Institute
The Kurchatov Institute (russian: Национальный исследовательский центр «Курчатовский Институт», 'National Research Centre "Kurchatov Institute) is Russia's leading research and developmen ...
and was considered a
state secret, discussion of the reactor's flaws was forbidden, even among the actual personnel operating the plant. Some later RBMK designs did include control rods on electromagnetic grapples, thus controlling the reaction speed and, if necessary, stopping the reaction completely. The RBMK reactor at Chernobyl, however, had manual clutch control rods.
All RBMK reactors underwent significant changes following the
Chernobyl disaster
The Chernobyl disaster was a nuclear accident that occurred on 26 April 1986 at the No. 4 reactor in the Chernobyl Nuclear Power Plant, near the city of Pripyat in the north of the Ukrainian SSR in the Soviet Union. It is one of only two nuc ...
. The positive void coefficient was reduced from +4.5
β to +0.7 β, decreasing the likelihood of further reactivity accidents, at the cost of higher enrichment requirements of the uranium fuel.
Improvements since the Chernobyl accident
In his posthumously published memoirs,
Valery Legasov
Valery Alekseyevich Legasov (russian: Валерий Алексеевич Легасов; 1 September 1936 – 27 April 1988) was a Soviet and Russian inorganic chemist and a member of the Academy of Sciences of the Soviet Union. He is now ma ...
, the First Deputy Director of the
Kurchatov Institute of Atomic Energy
The Kurchatov Institute (russian: Национальный исследовательский центр «Курчатовский Институт», 'National Research Centre "Kurchatov Institute) is Russia's leading research and developmen ...
, revealed that the Institute's scientists had long known that the RBMK had significant design flaws. Legasov's suicide in 1988, following frustrated attempts to promote nuclear and industrial safety reform, caused shockwaves throughout the scientific community. The RBMK's design problems were discussed increasingly openly.
Following the accident at Chernobyl, all remaining RBMK reactors were retrofitted with a number of updates for
safety
Safety is the state of being "safe", the condition of being protected from harm or other danger. Safety can also refer to risk management, the control of recognized hazards in order to achieve an acceptable level of risk.
Meanings
There are ...
. The largest of these updates fixed the RBMK control rod design. The control rods have graphite displacers, which prevent coolant water from entering the space vacated as the rods are withdrawn. In the original design, those displacers, being shorter than the height of the core, left columns of water at the bottom (and at the top) when the rods were fully extracted.
During insertion, the graphite would first displace that lower water, locally increasing reactivity. Also, when the rods were in their uppermost position, the absorber ends were outside the core, requiring a relatively large displacement before achieving a significant reduction in reactivity. These design flaws were likely the final trigger of the first explosion of the Chernobyl accident, causing the lower part of the core to become
prompt critical
In nuclear engineering, prompt criticality describes a nuclear fission event in which criticality (the threshold for an exponentially growing nuclear fission chain reaction) is achieved with prompt neutrons alone (neutrons that are released immed ...
when the operators tried to shut down the highly destabilized reactor by reinserting the rods. The updates are:
*An increase in fuel enrichment from 2% to 2.4% to compensate for control rod modifications and the introduction of additional absorbers.
*Manual control rod count increased from 30 to 45.
*80 additional absorbers inhibit operation at low power, where the RBMK design is most dangerous.
* AZ-5 (emergency reactor shutdown or
SCRAM
A scram or SCRAM is an emergency shutdown of a nuclear reactor effected by immediately terminating the fission reaction. It is also the name that is given to the manually operated kill switch that initiates the shutdown. In commercial reactor ...
) sequence reduced from 18 to 12 seconds.
* Addition of the БАЗ or BAZ* system, (rapid reactor emergency protection) which would insert 24 uniformly distributed rods into the reactor core via a modified drive mechanism within 1.8 to 2.5 seconds.
*Precautions against unauthorized access to emergency safety systems.
In addition,
RELAP5-3D models of RBMK-1500 reactors were developed for use in integrated thermal-hydraulics-neutronics calculations for the analysis of specific transients in which the neutronic response of the core is important.
*BAZ button is intended as a preemptive measure to bring down reactivity before AZ-5 is activated, to enable the safe and stable emergency shutdown of a RBMK.
Deformed graphite moderator blocks
From May 2012 to December 2013,
Leningrad
Saint Petersburg ( rus, links=no, Санкт-Петербург, a=Ru-Sankt Peterburg Leningrad Petrograd Piter.ogg, r=Sankt-Peterburg, p=ˈsankt pʲɪtʲɪrˈburk), formerly known as Petrograd (1914–1924) and later Leningrad (1924–1991), i ...
-1 was offline while repairs were made related to deformed graphite moderator blocks. The 18-month project included research and the development of maintenance machines and monitoring systems. Similar work will be applied to the remaining operational RBMKs.
Graphite moderator blocks in the RBMK can be repaired and replaced in situ, unlike in the other current large graphite moderated reactor, the
advanced gas-cooled reactor.
Longitudinal cutting in some of the graphite columns during lifetime extension refurbishment work can return the graphite stack to its initial design geometry.
[
]
Further development
A post-Soviet redesign of the RBMK is the MKER
The MKER (russian: МКЭР, Многопетлевой Канальный Энергетический Реактор: ''Mnogopetlevoy Kanalynyi Energeticheskiy Reaktor'', translation: ''multi-loop pressure tube power reactor'') is a Russian thi ...
(Russian: ''МКЭР'', ''Многопетлевой Канальный Энергетический Реактор'' nogopetlevoy Kanalniy Energeticheskiy Reaktor which means ''Multi-loop pressure tube power reactor''), with improved safety and a containment building. The physical prototype of the MKER-1000 is the 5th unit of the Kursk Nuclear Power Plant
The Kursk Nuclear Power Plant (Russian: Курская АЭС []) is a nuclear power plant located in western Russia on the bank of the Seym River about 40 kilometers west of the city of Kursk. The nearby town of Kurchatov was founded when cons ...
. The construction of Kursk 5 was cancelled in 2012. A MKER-800, MKER-1000 and MKER-1500 were planned for the Leningrad nuclear power plant.
Closures
Of the 17 RBMKs built (Unit 5 was still under construction at the Kursk Nuclear Power Plant), all three surviving reactors at the Chernobyl plant have now been closed. Unit 1 was closed in 1996, Unit 3 in 2000, (Unit 4 having been destroyed in the accident, and Unit 2 disabled after a hydrogen explosion in 1991). Chernobyl 5 and 6 were under construction at the time of the accident at Chernobyl, but further construction was stopped due to the high level of contamination at the site limiting its longer term future. Both reactors at Ignalina
Ignalina ( pl, Ignalino) is a city in eastern Lithuania. It is known as a tourist destination in the Aukštaitija National Park. Ignalina is also famous for the Ignalina Nuclear Power Plant in nearby Visaginas.
Legend
It is said that Ignalina ha ...
in Lithuania
Lithuania (; lt, Lietuva ), officially the Republic of Lithuania ( lt, Lietuvos Respublika, links=no ), is a country in the Baltic region of Europe. It is one of three Baltic states and lies on the eastern shore of the Baltic Sea. Lithuania ...
were also shut down. Russia is the only country to still operate reactors of this design: Leningrad
Saint Petersburg ( rus, links=no, Санкт-Петербург, a=Ru-Sankt Peterburg Leningrad Petrograd Piter.ogg, r=Sankt-Peterburg, p=ˈsankt pʲɪtʲɪrˈburk), formerly known as Petrograd (1914–1924) and later Leningrad (1924–1991), i ...
(2 RBMK-1000), Smolensk
Smolensk ( rus, Смоленск, p=smɐˈlʲensk, a=smolensk_ru.ogg) is a city and the administrative center of Smolensk Oblast, Russia, located on the Dnieper River, west-southwest of Moscow. First mentioned in 863, it is one of the oldest c ...
(3 RBMK-1000) and Kursk
Kursk ( rus, Курск, p=ˈkursk) is a city and the administrative center of Kursk Oblast, Russia, located at the confluence of the Kur, Tuskar, and Seym rivers. The area around Kursk was the site of a turning point in the Soviet–German stru ...
(3 RBMK-1000), Kursk Unit 1 was shutdown via its BSM key at 00:24, December 19th, 2021, bringing an end to the last time the plant would run all four of its units side by side. There are currently no further RBMK Reactors under construction in Russia. The last RBMK Reactor in Russia is expected to shut down in 2034 at Smolensk-3.
List of RBMK reactors
Color key:
:
A graphite-moderated Magnox
Magnox is a type of nuclear power/production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The n ...
reactor exists in North Korea
North Korea, officially the Democratic People's Republic of Korea (DPRK), is a country in East Asia. It constitutes the northern half of the Korea, Korean Peninsula and shares borders with China and Russia to the north, at the Yalu River, Y ...
at the Yongbyon Nuclear Scientific Research Center
The Nyongbyon Nuclear Scientific Research Center is North Korea's major nuclear facility, operating its first nuclear reactors. It is located in Nyongbyon County in North Pyongan Province, about 100 km north of Pyongyang. The center produc ...
.[ slide at 00:33:00/ref> It is important to keep in mind that while the gas cooled Magnox, AGR and pebble bed reactors (Such as the ]Dragon reactor
DRAGON Reactor Experiment (DRE) was an experimental high temperature gas-cooled reactor at Winfrith in Dorset, England, an experimental reactor of the Organisation for Economic Co-operation and Development (O.E.C.D) High Temperature Reactor Projec ...
at Winfrith
Winfrith Atomic Energy Establishment, or AEE Winfrith, was a United Kingdom Atomic Energy Authority site near Winfrith Newburgh in Dorset. It covered an area on Winfrith Heath to the west of the village of Wool between the A352 road and the South ...
) use graphite as moderators their use of gases (carbon dioxide
Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
for Magnox and AGR, while helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
for Dragon) as heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
fluids causes them to have no void coefficient.
See also
*Nikolay Dollezhal
Nikolay Antonovich Dollezhal (russian: Николай Антонович Доллежа́ль; – 20 November 2000) was a Russian engineer of Czechs, Czech origin whose career was spent in the former Soviet atomic bomb project, Soviet program ...
, head of RBMK design bureau
References
Sources and external links
Technical data on RBMK-1500 reactor
at Ignalina nuclear power plant
The Ignalina Nuclear Power Plant ( lt, Ignalinos atominė elektrinė, IAE) is a decommissioned two-unit RBMK-1500 nuclear power station in Visaginas Municipality, Lithuania. It was named after the nearby city of Ignalina. Due to the plant's sim ...
– a decommissioned RBMK reactor
Chernobyl – A Canadian Perspective
– A brochure describing nuclear reactors in general and the RBMK design in particular, focusing on the safety differences between them and CANDU
The CANDU (Canada Deuterium Uranium) is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide ( heavy water) moderator and its use of (originally, natural) uranium fuel. C ...
reactors. Published by Atomic Energy of Canada Limited.
{{Nuclear fission reactors
Nuclear power reactor types
Nuclear technology in the Soviet Union
Nuclear power in the Soviet Union