HOME

TheInfoList



OR:

Paul Joseph Steinhardt (born December 25, 1952) is an American
theoretical physicist Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experime ...
whose principal research is in cosmology and condensed matter physics. He is currently the Albert Einstein Professor in Science at
Princeton University Princeton University is a private research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the ...
, where he is on the faculty of both the Departments of Physics and of Astrophysical Sciences. Steinhardt is best known for his development of new theories of the origin, evolution and future of the universe. He is also well known for his exploration of a new form of matter, known as
quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical ...
s, which were thought to exist only as man-made materials until he co-discovered the first known natural
quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical ...
in a museum sample. He subsequently led a separate team that followed up that discovery with several more examples of natural
quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical ...
s recovered from the wilds of the Kamchatka Peninsula in far eastern Russia. Several years later, he and collaborators reported the accidental synthesis of a previously unknown type of quasicrystal in the remnants of the first atomic bomb test on July 16, 1945, at Alamagordo, New Mexico. He has written two popular books on these topics. ''Endless Universe: Beyond the Big Bang (2007)'', co-authored with
Neil Turok Neil Geoffrey Turok (born 16 November 1958) is a South African physicist. He holds the Higgs Chair of Theoretical Physics at the University of Edinburgh since 2020, and has been director emeritus of the Perimeter Institute for Theoretical Physi ...
, describes the early struggles in challenging the widely accepted big bang theory and the subsequent development of the bouncing or cyclic theories of the universe, which are currently being explored and tested. ''The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter (2019)'' recounts the story of quasicrystals from his invention of the concept with his then-student Dov Levine, to his expedition to far eastern Russia to recover meteorite fragments containing natural quasicrystal grains formed billions of years ago.


Education and career

Born in 1952 to Helen and Charles Steinhardt, Paul Steinhardt is the second oldest of four children. He grew up in Miami, Florida, where he attended Coral Gables Senior High School while attending classes at a local university. Steinhardt received his Bachelor of Science in Physics at
Caltech The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
in 1974, and his Ph.D. in Physics at
Harvard University Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of high ...
in 1978 where his advisor was
Sidney Coleman Sidney Richard Coleman (7 March 1937 – 18 November 2007) was an American theoretical physicist noted for his research in high-energy theoretical physics. Life and work Sidney Coleman grew up on the Far North Side of Chicago. In 1957, h ...
. He was a Junior Fellow in the
Harvard Society of Fellows The Society of Fellows is a group of scholars selected at the beginnings of their careers by Harvard University for their potential to advance academic wisdom, upon whom are bestowed distinctive opportunities to foster their individual and intell ...
from 1978 to 1981; rose from junior faculty to Mary Amanda Wood Professor at the
University of Pennsylvania The University of Pennsylvania (also known as Penn or UPenn) is a private research university in Philadelphia. It is the fourth-oldest institution of higher education in the United States and is ranked among the highest-regarded universitie ...
between 1981 and 1998, during which he maintained a long-term association with the
Thomas J. Watson Research Center The Thomas J. Watson Research Center is the headquarters for IBM Research. The center comprises three sites, with its main laboratory in Yorktown Heights, New York, U.S., 38 miles (61 km) north of New York City, Albany, New York and wit ...
; and has been on the faculty at
Princeton University Princeton University is a private research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the ...
since the Fall of 1998. He co-founded the Princeton Center for Theoretical Science and served as its Director from 2007 to 2019.


Research


Inflationary cosmology

Beginning in the early 1980s, Steinhardt co-authored seminal papers that helped to lay the foundations of
inflationary cosmology In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singularit ...
. Slow-roll inflation and Generation of the seeds for galaxies: In 1982, Steinhardt and Andreas Albrecht (and, independently, Andrei Linde) constructed the first inflationary models that could speed up the expansion of the
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
enough to explain the observed smoothness and flatness of the universe and then "gracefully exit" to the more modest expansion observed today. The Albrecht-Steinhardt paper was the first to note the effect of Hubble friction in sustaining inflation for a sufficiently long period (the "slow-roll" effect), setting the prototype for most subsequent inflationary models. Hubble friction played a critical role in the 1983 paper by James Bardeen, Steinhardt and Michael S. Turner who were the first to introduce a reliable, relativistically gauge invariant method to compute how quantum fluctuations during inflation might naturally generate a nearly scale-invariant spectrum of density fluctuations with a small tilt, properties later shown by observations of the cosmic microwave background to be features of our universe. The density fluctuations are seeds about which galaxies eventually form. Contemporaneous calculations by several other groups obtained similar conclusions using less rigorous methods. Eternal inflation and the multiverse: In 1982, Steinhardt presented the first example of eternal inflation. Neverending inflation was eventually shown to be a generic feature of inflationary models that leads to a multiverse, the break-up of space into an infinite multitude of patches spanning an infinite range of outcomes instead of the single smooth and flat universe, as originally hoped when first proposed. Although some cosmologists would later come to embrace the multiverse, Steinhardt consistently expressed his concern that it utterly destroys the predictive power of the theory he helped create. Because the inflationary theory leads to a multiverse that allows for every possible outcome, Steinhardt argued, we must conclude that the inflationary theory actually predicts nothing. Imprint of gravitational waves on the cosmic microwave background: In 1993, Robert Crittenden, Rick Davis, J.R. Bond, G. Efstathiou and Steinhardt performed the first calculations of the complete imprint of gravitational waves on the B-mode temperature maps and on the polarization of the microwave background radiation in 1993. Despite his criticisms of the idea, Steinhardt's major contributions to the inflationary theory were recognized in 2002 when he shared the Dirac Prize with
Alan Guth Alan Harvey Guth (; born February 27, 1947) is an American theoretical physicist and cosmologist. Guth has researched elementary particle theory (and how particle theory is applicable to the early universe). He is Victor Weisskopf Professor of ...
of M.I.T. and Andrei Linde of Stanford. The unlikeliness problem: In 2013, Anna Ijjas,
Abraham Loeb Abraham "Avi" Loeb ( he, אברהם (אבי) לייב; born February 26, 1962) is an Israeli-American theoretical physicist who works on astrophysics and cosmology. Loeb is the Frank B. Baird Jr. Professor of Science at Harvard University. He had ...
and Steinhardt added to the criticisms in a widely discussed pair of papers that the inflationary model was much less likely to explain our universe than previously thought. According to their analysis of the Planck satellite 2013 results, the chances of obtaining a universe matching the observations after a period of inflation is less than one in a
googolplex A googolplex is the number 10, or equivalently, 10 or 1010,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 . Written out in ordinary decimal notation, it is 1 fol ...
. Steinhardt and his team dubbed the result the "unlikeliness problem." The two papers also showed that Planck satellite data ruled out what had been historically accepted as the simplest inflationary models and that the remaining inflationary models require more parameters, more fine-tuning of those parameters, and more unlikely initial conditions. In 2015, the unlikeness problem was reaffirmed and strengthened by a subsequent round of measurements reported by the Planck satellite team. Incompatibility with the string-swampland conjectures: In 2018, Steinhardt, in collaboration with Prateek Agrawal, George Obieds, and Cumrun Vafa, argued that inflation may also be incompatible with string theory because inflationary models generally violate constraints (sometimes called the "swampland conjectures") on what is required for a model to be consistent with quantum gravity.


Bouncing and cyclic cosmology

Motivated by what he viewed as the failures of inflationary theory, Steinhardt became a leading developer of a new class of cosmological models that replace the so-called big bang with a bounce. The new theory envisions a smooth transition from a previous period of contraction to the current period of expansion, avoiding any need for inflation and evading the infamous cosmic singularity problem associated with a big bang. A natural extension of these ideas is a neverbeginning and neverending cyclic universe in which epochs of bounce, expansion, and contraction repeat at regular intervals. Early models: The first examples of these bouncing and cyclic models, referred to as "ekpyrotic," were presented in papers in 2001 with Justin Khoury, Burt A. Ovrut and Neil Turok. The first model was based on the speculative notion suggested by string theory that the universe has extra-dimensions bounded by "branes" (where "brane" is derived from "membrane," a basic object in string theory). The bounce corresponded to the collision and rebound of these branes. The bounce (that is, brane collision) would be a violent event that would depend sensitively on quantum gravity effects that are not yet established. In 2002, Steinhardt and Turok then incorporated the ekpyrotic idea into a bolder proposal: an early version of a cyclic theory of the universe. The new cyclic model: More recent versions developed by Anna Ijjas and Steinhardt do not require extra dimensions or branes or string theory; ordinary fields with potential energy evolving in space-time, similar to inflationary models, can be used. Furthermore, the bounce is a gentle transition that can be fully computed because it occurs long before quantum gravity effects become important. There is no cosmic singularity problem, unlike theories based on the big bang. In the cyclic version of these models, space never crunches; rather, it necessarily grows overall from bounce to bounce every 100 billion years or so. After each bounce, gravitational energy is converted into the matter and radiation that fuels the next cycle. To an observer, the evolution appears to be cyclic because the temperature, density, number of stars and galaxies, etc., are on average the same from one cyclic to the next and the observer cannot see far enough to know that there is more space. The fact that the universe expands overall from cycle to cycle means that the entropy produced in earlier cycles (by the formation of stars and other entropy-producing processes) is increasingly diluted as the cycles proceed and so does not have any physical effect on cosmic evolution. This growth from cycle to cycle and associated entropy dilution are features that distinguish these new cyclic models from versions discussed in the 1920s by Friedmann and Tolman, and explain how the new cyclic model avoids the "entropy problem" that beset the earlier versions. Advantages: Cyclic models have two important advantages over
inflation In economics, inflation is an increase in the general price level of goods and services in an economy. When the general price level rises, each unit of currency buys fewer goods and services; consequently, inflation corresponds to a reduct ...
ary models. First, because they do not include inflation, they do not produce a multiverse. As a result, unlike inflation, cyclic models produce a single universe that everywhere have the same predicted properties that are subject to empirical tests. Second, cyclic models explain why there must be dark energy. According to these modes, the accelerated expansion caused by dark energy starts the smoothing process, the decay of dark energy to other forms of energy starts a period of slow contraction, and the slow contraction is what is responsible for smoothing and flattening the universe. Predictions: One prediction of the cyclic models is that, unlike inflation, no detectable gravitational waves are generated during the smoothing and flattening process. Instead, the only source of gravitational waves on cosmic wavelength scales are so-called "secondary gravitational waves" that are produced long after the bounce with amplitudes that are far too weak to be found in current detectors but ultimately detectable. A second prediction is that the current acceleration expansion must eventually stop and the vacuum must be eventually decay in order to initiate the next cycle.(Other predictions depend on the specific fields (or branes) that cause the contraction.) The cyclic model may naturally explain why the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
is exponentially small and positive, compared to the enormous value expected by quantum gravity theories. The cosmological constant might begin large, as expected, but then slowly decay over the course of many cycles to the tiny value observed today. The discovery of the
Higgs field The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the excited state, quantum excitation of the Higgs field, one of the field (physics), fields in particl ...
at the Large Hadron Collider (LHC) may provide added support for the cyclic model. Evidence from the LHC suggests that the current vacuum may decay in the future, according to calculations made by Steinhardt, Turok and Itzhak Bars. The decay of the current vacuum is required by the cyclic model in order to end the current phase of expansion, contract, bounce and a new era of expansion; the Higgs provides a possible mechanism of decay that can be tested. The Higgs field is a viable candidate for the field that drives the cycles of expansion and contraction. Dark energy and dark matter: Steinhardt has made significant contributions researching the "dark side" of the universe:
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univ ...
, the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
problem and
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
. First evidence of cosmic acceleration: In 1995, Steinhardt and
Jeremiah Ostriker Jeremiah Paul "Jerry" Ostriker (born April 13, 1937) is an American astrophysicist and a professor of astronomy at Columbia University and is the Charles A. Young Professor ''Emeritus'' at Princeton where he also continues as a senior research s ...
used a concordance of cosmological observations to show there must be a non-zero dark energy component today, more than 65 percent of the total energy density, sufficient to cause the expansion of the universe to accelerate. This was verified three years later by supernova observations in 1998. Quintessence: Working with colleagues, he subsequently introduced the concept of quintessence, a form of dark energy that varies with time. It was first posited by Steinhardt's team as an alternative to the cosmological constant, which is (by definition) constant and static; quintessence is dynamic. Its energy density and pressure evolve over time. The 2018 paper on swampland conjectures with Agrawal, Obieds and Vafa points to quintessence as being the only option for dark energy in string theory and consistent quantum gravity. Self-interacting dark matter: In 2000,
David Spergel David Nathaniel Spergel is an American theoretical astrophysicist and the Emeritus Charles A. Young Professor of Astronomy on the Class of 1897 Foundation at Princeton University. Since 2021, he has been the President of the Simons Foundation ...
and Steinhardt first introduced the concept of strongly self-interacting dark matter (SIDM) to explain various anomalies in standard cold dark models based on assuming dark matter consists of
weakly interacting massive particles Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter. There exists no formal definition of a WIMP, but broadly, a WIMP is a new elementary particle which interacts via gra ...
(also referred to as "WIMPs"). In 2014, Steinhardt, Spergel and Jason Pollack have proposed that a small fraction of dark matter could have ultra-strong self-interactions, which would cause the particles to coalesce rapidly and collapse into seeds for early
supermassive black holes A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
.


Quasicrystals

Development of the theory: In 1983, Steinhardt and his then-student Dov Levine first introduced the theoretical concept of
quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical ...
s in a patent disclosure. The complete theory was published the following year in a paper entitled "Quasicrystals: A New Class of Ordered Structures." The theory proposed the existence of a new phase of solid matter analogous to Penrose tilings with rotational symmetries previously thought to be impossible for solids. Steinhardt and Levine named the new phase of matter a "quasicrystal." The never-before-seen
atomic structure Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
had quasiperiodic atomic ordering, rather than the periodic ordering characteristic of conventional
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s. The new theory overturned 200 years of scientific dogma and proved that quasicrystals could violate all of the previously accepted mathematical theorems about the symmetry of matter. Symmetries once thought to be forbidden for solids are actually possible for quasicrystals, including solids with axes of five-fold symmetry and three-dimensional
icosahedral In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
symmetry. The first reported example of a synthetic quasicrystal: Working simultaneously to, but independently of, Steinhardt and Levine,
Dan Shechtman Dan Shechtman ( he, דן שכטמן; born January 24, 1941)Dan Shechtman
. (PDF). Retri ...
, Ilan Blech, Denis Gratias and John Cahn at the
National Bureau of Standards The National Institute of Standards and Technology (NIST) is an agency of the United States Department of Commerce whose mission is to promote American innovation and industrial competitiveness. NIST's activities are organized into physical sci ...
(NBS) were focused on an experimental discovery they could not explain. It was an unusual
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductilit ...
of manganese and aluminum with a
diffraction pattern Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a ...
of what appeared to be sharp (though not perfectly point-like) spots arranged with icosahedral symmetry that did not fit any known crystal structure. The alloy was first noted in 1982, but results were not published until November 1984 after more convincing data had been obtained. Steinhardt and Levine were shown a preprint of the Shechtman team's paper and immediately recognized that it could be experimental proof of their still-unpublished quasicrystal theory. The theory, along with the proposal that it could explain the mysterious, forbidden structure of the new alloy was published in December 1984. The new alloy was ultimately discovered to be problematic. It proved to be unstable and the noted imperfections in the diffraction pattern allowed for multiple explanations (including one about
crystal twinning Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightly ...
proposed by Linus Pauling) that were hotly debated for the next few years. In 1987, An-Pang Tsai and his group at Japan's
Tohoku University , or is a Japanese national university located in Sendai, Miyagi in the Tōhoku Region, Japan. It is informally referred to as . Established in 1907, it was the third Imperial University in Japan and among the first three Designated National ...
made an important breakthrough with the synthesis of the first-ever stable
icosahedral In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
quasicrystal. It had sharp diffraction spots arranged in close accord with Steinhardt and Levine's quasicrystal theory and was inconsistent with any of the alternative explanations. The theoretical debate was effectively ended and the Steinhardt-Levine theory gained wide acceptance. The first natural quasicrystal: In 1999, Steinhardt assembled a team at
Princeton University Princeton University is a private research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the ...
to search for a natural quasicrystal. The team, composed of Peter Lu, Ken Deffeyes and Nan Yao, devised a novel mathematical algorithm to search through an international database of powder diffraction patterns. For the first eight years, the search yielded no results. In 2007, Italian scientist
Luca Bindi Luca Bindi (born 1971) is an Italian geologist. He holds the Chair of Mineralogy and Crystallography and is the Head of the Department of Earth Sciences of the University of Florence. He is also a research associate at the Istituto di Geoscienze e ...
, then curator of the mineral collection at the Universite’ di Firenze, joined the team. Two years later, Bindi identified a promising specimen in his museum's storage room. The tiny specimen, a few millimeters across, had been packed away in a box labeled " khatyrkite," which is an ordinary crystal composed of copper and aluminum. On January 2, 2009, Steinhardt and Nan Yao, director of the Princeton Imaging Center, examined the material and identified the signature diffraction pattern of an icosahedral quasicrystal. This was the first known natural
quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical ...
. The International Mineralogical Association accepted the quasicrystal as a new
mineral In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2 ...
and designated its name,
icosahedrite Icosahedrite is the first known naturally occurring quasicrystal phase. It has the composition Al63Cu24Fe13 and is a mineral approved by the International Mineralogical Association in 2010. Its discovery followed a 10-year-long systematic search ...
. The material had exactly the same atomic composition (Al63Cu24Fe13) as the first
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of the ...
ally stable quasicrystal synthesized by An-Pang Tsai and his group in their laboratory in 1987. Expedition to Chukotka: Two years after identifying the museum sample, Steinhardt organized an international team of experts and led them on an expedition to its source, the remote Listventovyi stream in the Chukotka Autonomous Okrug in the northern half of the
Kamchatka Peninsula The Kamchatka Peninsula (russian: полуостров Камчатка, Poluostrov Kamchatka, ) is a peninsula in the Russian Far East, with an area of about . The Pacific Ocean and the Sea of Okhotsk make up the peninsula's eastern and w ...
in far eastern Russia. The team included Bindi and Valery Kryachko, the Russian ore geologist who had found the original samples of khatyrkite crystal while working at the Listventovyi stream in 1979. Other members of the team were: Chris Andronicos, Vadim Distler, Michael Eddy, Alexander Kostin, Glenn MacPherson, Marina Yudovskaya, and Steinhardt's son, William Steinhardt. After digging and panning a ton and a half of clay along the banks of the Listvenitovyi stream in the
Koryak Mountains The Koryak Mountains or Koryak Highlands () are an area of mountain ranges in Far-Eastern Siberia, Russia, located in Chukotka Autonomous Okrug and in Kamchatka Krai, with a small part in Magadan Oblast. The highest point in the system is the ...
, eight different grains containing icosahedrite were identified. During subsequent years of study, Steinhardt's team proved that both the sample found in the Florence museum and the samples recovered from the field in Chukotka originated from a meteorite formed 4.5 billion years ago (before there were planets), and landed on the Earth about 15,000 years ago. More natural quasicrystals: Further studies revealed other new minerals in the Chukotka samples. In 2014, one of those minerals was discovered to be a crystalline phase of aluminum, nickel and iron (Al38Ni33Fe30). It was accepted by the International Mineralogical Association and named "steinhardtite" in Steinhardt's honor In 2015, a second type of natural quasicrystal was discovered in a different grain of the same meteorite. The second known natural quasicrystal was found to be a different mixture of aluminum, nickel and iron (Al71Ni24Fe5) and had a decagonal symmetry (a regularly stacking of atomic layers which each have 10-fold symmetry). It was accepted by the International Mineralogical Association and given the name "decagonite." Three more crystalline minerals were also discovered and named after colleagues involved in Steinhardt's quasicrystal research: "hollisterite," for Princeton petrologist Lincoln Hollister; "kryachkoite," for Russian geologist Valery Kryachko; and "stolperite," for Caltech's former provost Ed Stolper. A previously unknown quasicrystal created by the first atomic bomb test: In 2021, Steinhardt led the team that discovered a novel icosahedral quasicrystal created by the detonation of the first nuclear device at Alamogordo, New Mexico, on July 16, 1945 (the
Trinity The Christian doctrine of the Trinity (, from 'threefold') is the central dogma concerning the nature of God in most Christian churches, which defines one God existing in three coequal, coeternal, consubstantial divine persons: God th ...
test). The new quasicrystal was discovered within a sample of red
trinitite Trinitite, also known as atomsite or Alamogordo glass, is the glassy residue left on the desert floor after the plutonium-based Trinity nuclear bomb test on July 16, 1945, near Alamogordo, New Mexico. The glass is primarily composed of arkosic sa ...
and is the oldest extant anthropogenic quasicrystal ever discovered. The previously unknown structure, which is made of iron, silicon, copper and calcium, is thought to have been formed by the fusion of vaporized desert sand and copper cables during the atomic test blast. The discovery of a unique quasicrystal in trinitite could transform the field of nuclear forensics, leading to a new diagnostic tool which could help law enforcement prevent future terrorist attacks by using quasicrystals (which unlike radioactive debris and gases do not decay) to identify the signature of an atomic weapon and track down the culprits. Other contributions to the field: Steinhardt and his collaborators have made significant contributions to understanding the quasicrystals’ unique mathematical and physical properties, including theories of how and why quasicrystals form and their elastic and
hydrodynamic In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including '' aerodynamics'' (the study of air and other gases in motion) a ...
s properties. Peter J. Lu and Steinhardt discovered a quasicrystalline Islamic tiling on the Darb-e Imam Shrine (1453 A.D.) in Isfahan,
Iran Iran, officially the Islamic Republic of Iran, and also called Persia, is a country located in Western Asia. It is bordered by Iraq and Turkey to the west, by Azerbaijan and Armenia to the northwest, by the Caspian Sea and Turkmeni ...
constructed from
girih tiles ''Girih'' tiles are a set of five tiles that were used in the creation of Islamic geometric patterns using strapwork ('' girih'') for decoration of buildings in Islamic architecture. They have been used since about the year 1200 and their arrang ...
. In 2007, they deciphered the manner in which early artists created increasingly complex periodic
girih ''Girih'' ( fa, گره, "knot", also written ''gereh'') are decorative Islamic geometric patterns used in architecture and handicraft objects, consisting of angled lines that form an interlaced strapwork pattern. ''Girih'' decoration is beli ...
patterns. Those early designs were shown to have culminated in the development of a nearly perfect quasi-
crystalline A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
pattern five centuries before the discovery of Penrose patterns and the Steinhardt-Levine quasicrystal theory.


Photonics and hyperuniformity

Steinhardt's research on
quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical ...
s and other non- crystalline solids expanded into work on designer materials with novel
photonic Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Though ...
and phononic properties. Photonic quasicrystals: A team of researchers including Steinhardt, Paul Chaikin, Weining Man and Mischa Megens designed and tested the first photonic quasicrystal with
icosahedral symmetry In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual polyhedr ...
in 2005. They were the first to demonstrate the existence of photonic band gaps ("PBGs"). These materials block light for a finite range of frequencies (or colors) and let pass light with frequencies outside that band, similar to the way in which a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
blocks electrons for a finite range of energies. Hyperuniform disordered solids (HUDS): Working with
Salvatore Torquato Salvatore Torquato is an American theoretical scientist born in Falerna, Italy. His research work has impacted a variety of fields, including physics, chemistry, applied and pure mathematics, materials science, engineering, and biological ph ...
and Marian Florescu, in 2009 Steinhardt discovered a new class of photonic materials called hyperuniform disordered solids (HUDS), and showed that solids consisting of a hyperuniform disordered arrangement of dielectric elements produce band gaps with perfect spherical symmetry. These materials, which act as isotropic semiconductors for light, can be used to control and manipulate light in a wide range of applications including
optical communications Optical communication, also known as optical telecommunication, is communication at a distance using light to carry information. It can be performed visually or by using electronic devices. The earliest basic forms of optical communication date ...
, photonic computers, energy harvesting,
non-linear optics Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typica ...
and improved light sources. Phoamtonics: In 2019, Steinhardt, along with Michael Klatt and Torquato, introduced the idea of "phoamtonics," which refers to photonic materials based on foam-like designs. They showed that large photonic bandgaps could arise in network structures created by converting the foam edges (intersections between foam bubbles) to a dielectric material for the two most famous crystalline foam structures, Kelvin foams and Weiare-Phelan foams. Etaphase Inc.: The meta-material breakthroughs by Steinhardt and his Princeton colleagues have valuable commercial applications. In 2012, the scientists helped create a start-up company called Etaphase, which will apply their discoveries to a wide range of high performance products. The inventions will be used in integrated circuits, structural materials, photonics, communications, chip-to-chip communications, intra-chip communications, sensors, datacomm, networking, and solar applications.


Amorphous solids

Steinhardt's research in disordered forms of matter has centered on the structure and properties of
glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling ( quenching ...
es and
amorphous semiconductors Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto ...
, and amorphous metals. He constructed the first computer generated continuous random network (CRN) model of
glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling ( quenching ...
and
amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films ont ...
in 1973, while still an undergraduate at
Caltech The California Institute of Technology (branded as Caltech or CIT)The university itself only spells its short form as "Caltech"; the institution considers other spellings such a"Cal Tech" and "CalTech" incorrect. The institute is also occasional ...
. CRNs remain the leading model of amorphous silicon and other semiconductors today. Working with Richard Alben and D. Weaire, he used the computer model to predict structural and electronic properties. Working with David Nelson and Marco Ronchetti, Steinhardt formulated mathematical expressions, known as "orientational order parameters", for computing the degree of alignment of interatomic bonds in
liquids A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
and
solids Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural ...
in 1981. Applying them to computer simulations of monatomic supercooled liquids, they showed that the atoms form arrangements with finite-range
icosahedral In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons". There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
(soccer-ball like) bond orientational order as liquids cool.


Honors and awards

* In 1986, Steinhardt was elected as a Fellow in the American Physical Society in recognition of his contributions to cosmology and to the theoretical understanding of quasicrystals. * In 1994, he was named a Guggenheim Fellow. * In 1998, he was elected to the
United States National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the Nati ...
. * In 2002, Steinhardt was honored for his work on the inflationary model of the universe with the P.A.M. Dirac Medal from the
International Centre for Theoretical Physics The Abdus Salam International Centre for Theoretical Physics (ICTP) is an international research institute for physical and mathematical sciences that operates under a tripartite agreement between the Italian Government, United Nations Educatio ...
. He shared the award with
Alan Guth Alan Harvey Guth (; born February 27, 1947) is an American theoretical physicist and cosmologist. Guth has researched elementary particle theory (and how particle theory is applicable to the early universe). He is Victor Weisskopf Professor of ...
of MIT and Andrei Linde of Stanford. * In 2010, Steinhardt received the
Oliver E. Buckley Condensed Matter Prize The Oliver E. Buckley Condensed Matter Prize is an annual award given by the American Physical Society "to recognize and encourage outstanding theoretical or experimental contributions to condensed matter physics." It was endowed by AT&T Bell Lab ...
of the American Physical Society for his pioneering contributions to the theory of
quasicrystal A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical ...
s. * In 2012, he received the
John Scott Award John Scott Award, created in 1816 as the John Scott Legacy Medal and Premium, is presented to men and women whose inventions improved the "comfort, welfare, and happiness of human kind" in a significant way. "...the John Scott Medal Fund, establish ...
for his work on quasicrystals. * In 2012, Steinhardt was named Simons Fellow in Theoretical Physics and Radcliffe Fellow at the
Radcliffe Institute for Advanced Study The Radcliffe Institute for Advanced Study at Harvard University—also known as the Harvard Radcliffe Institute—is a part of Harvard University that fosters interdisciplinary research across the humanities, sciences, social sciences, arts, a ...
at Harvard. * In 2014, he received the Caltech Distinguished Alumni Award. * In 2014, the International Mineralogical Association accepted a new mineral from the Khatyrka meteorite into the official catalogue of natural minerals, and named it "steinhardtite" in his honor. * In 2018, he shared the Aspen Institute Italia Award with
Luca Bindi Luca Bindi (born 1971) is an Italian geologist. He holds the Chair of Mineralogy and Crystallography and is the Head of the Department of Earth Sciences of the University of Florence. He is also a research associate at the Istituto di Geoscienze e ...
for scientific research and collaboration between Italy and the United States. * In 2020, he received the Niels Bohr Institute Medal of Honour.


References

{{DEFAULTSORT:Steinhardt, Paul 1952 births Living people American cosmologists Harvard University alumni University of Pennsylvania faculty Members of the United States National Academy of Sciences 21st-century American physicists American string theorists Fellows of the American Physical Society Oliver E. Buckley Condensed Matter Prize winners