Prout's hypothesis was an early 19th-century attempt to explain the existence of the various
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s through a hypothesis regarding the internal structure of the
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
. In 1815 and 1816, the
English chemist
William Prout published two papers in which he observed that the
atomic weights that had been measured for the elements known at that time appeared to be whole multiples of the atomic weight of
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
. He then hypothesized that the hydrogen atom was the only truly fundamental object, which he called protyle, and that the atoms of other elements were actually groupings of various numbers of hydrogen atoms.
Prout's hypothesis was an influence on
Ernest Rutherford
Ernest Rutherford, 1st Baron Rutherford of Nelson (30 August 1871 – 19 October 1937) was a New Zealand physicist who was a pioneering researcher in both Atomic physics, atomic and nuclear physics. He has been described as "the father of nu ...
when he succeeded in "knocking" hydrogen nuclei out of nitrogen atoms with alpha particles in 1917, and thus concluded that perhaps the nuclei of all elements were made of such particles (the hydrogen nucleus), which in 1920 he suggested be named
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s, from the suffix for particles, added to the stem of Prout's word "protyle". The assumption as discussed by Rutherford was of a
nucleus consisting of Z + N = A
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s plus N
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s somehow trapped within thereby reducing the positive charge to +Z as observed and vaguely explaining
beta decay
In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
radioactivity
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. Such a nuclear constitution was known to be inconsistent with dynamics either
classical or early
quantum
In physics, a quantum (: quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a property can be "quantized" is referred to as "the hypothesis of quantization". This me ...
but seemed inevitable until the
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
hypothesis by Rutherford and discovery by English physicist
James Chadwick
Sir James Chadwick (20 October 1891 – 24 July 1974) was an English nuclear physicist who received the Nobel Prize in Physics in 1935 for his discovery of the neutron. In 1941, he wrote the final draft of the MAUD Report, which inspired t ...
.
The discrepancy between Prout's hypothesis and the known variation of some atomic weights to values far from integral multiples of hydrogen, was explained between 1913 and 1932 by the discovery of
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s and the
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
. According to the
whole number rule of
Francis Aston, Prout's hypothesis is correct for
atomic masses of individual isotopes, with an error of at most 1%.
Influence
Prout's hypothesis remained influential in chemistry throughout the 1820s. However, more careful measurements of the atomic weights, such as those compiled by
Jacob Berzelius in 1828 or
Edward Turner in 1832, disproved the hypothesis.
In particular, the atomic weight of
chlorine
Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
, which is 35.45 times that of
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
, could not at the time be explained in terms of Prout's hypothesis. Some came up with the
ad hoc
''Ad hoc'' is a List of Latin phrases, Latin phrase meaning literally for this. In English language, English, it typically signifies a solution designed for a specific purpose, problem, or task rather than a Generalization, generalized solution ...
claim that the basic unit was one-half of a hydrogen atom, but further discrepancies surfaced. This resulted in the hypothesis that one-quarter of a hydrogen atom was the common unit. Although they turned out to be wrong, these conjectures catalyzed further measurement of atomic weights.
The discrepancy in the
atomic weights was by 1919 suspected to be the result of the natural occurrence of multiple
isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s of the same element.
F. W. Aston discovered multiple stable isotopes for numerous elements using a
mass spectrograph. In 1919, Aston studied
neon
Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
with sufficient resolution to show that the two isotopic masses are very close to the integers 20 and 22, and that neither is equal to the known molar mass (20.2) of
neon
Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
gas.
[Mass spectra and isotopes]
Francis W. Aston, Nobel prize lecture 1922
By 1925, the problematic
chlorine
Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
was found to be composed of the isotopes
35Cl and
37Cl, in proportions such that the average weight of natural chlorine was about 35.45 times that of hydrogen.
For all elements, each individual isotope of
mass number
The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
''A'' was eventually found to have a mass very close to ''A'' times the mass of a hydrogen atom, with an error always less than 1%. This is a near miss to Prout's law being correct. Nevertheless, the rule was not found to predict isotope masses better than this for all isotopes, due mostly to mass defects resulting from release of
binding energy
In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
in
atomic nuclei when they are formed.
Although all elements are the product of
nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
of hydrogen into higher elements, it is now understood that atoms consist of both
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s (hydrogen nuclei) and
neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s. The modern version of Prout's rule is that the atomic mass of an isotope of
proton number (atomic number) ''Z'' and
neutron number ''N'' is equal to sum of the masses of its constituent protons and neutrons, minus the mass of the nuclear binding energy, the
mass defect. According to the
whole number rule proposed by
Francis Aston, the mass of an isotope is roughly, but not exactly, its
mass number
The mass number (symbol ''A'', from the German word: ''Atomgewicht'', "atomic weight"), also called atomic mass number or nucleon number, is the total number of protons and neutrons (together known as nucleons) in an atomic nucleus. It is appro ...
''A'' (''Z'' + ''N'') times a
dalton (Da), plus or minus binding energy discrepancy – a dalton being the modern approximation for "mass of a proton, neutron, or hydrogen atom". For example
iron-56 atoms (which have among the highest binding-energies) weigh only about 99.1% as much as 56 hydrogen atoms. The missing 0.9% of mass represents the energy lost when the nucleus of
iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
was made from hydrogen inside a star (see
stellar nucleosynthesis
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
).
Literary allusions
In his 1891 novel ''
The Doings of Raffles Haw'',
Arthur Conan Doyle
Sir Arthur Ignatius Conan Doyle (22 May 1859 – 7 July 1930) was a British writer and physician. He created the character Sherlock Holmes in 1887 for ''A Study in Scarlet'', the first of four novels and fifty-six short stories about Hol ...
talks about turning elements into other elements of decreasing
atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
, until a gray matter is reached.
In his 1959 novel ''Life and Fate'',
Vasily Grossman's principal character, the physicist Viktor Shtrum, reflects on Prout's hypothesis about hydrogen being the origin of other elements (and the felicitous fact that Prout's incorrect data led to an essentially correct conclusion), as he worries about his inability to formulate his own thesis.
See also
*
Binding energy
In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
References
Footnotes
Citations
Further reading
*
*
*
{{refend
External links
The Semiempirical Formula for Atomic Masses
History of chemistry
Discoverers of chemical elements
1810s in science
1815 in science
1816 in science