Proteolytic Cleavage Site
   HOME

TheInfoList



OR:

Proteolysis is the breakdown of proteins into smaller
polypeptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
s or
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
. Uncatalysed, the hydrolysis of
peptide bond In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein cha ...
s is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion. Proteolysis in organisms serves many purposes; for example, digestive enzymes break down proteins in food to provide amino acids for the organism, while proteolytic processing of a polypeptide chain after its synthesis may be necessary for the production of an active protein. It is also important in the regulation of some physiological and cellular processes including
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
, as well as preventing the accumulation of unwanted or misfolded proteins in cells. Consequently, abnormality in the regulation of proteolysis can cause disease. Proteolysis can also be used as an analytical tool for studying proteins in the laboratory, and it may also be used in industry, for example in food processing and stain removal.


Biological functions


Post-translational proteolytic processing

Limited proteolysis of a polypeptide during or after translation in
protein synthesis Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside Cell (biology), cells, homeostasis, balancing the loss of cellular proteins (via Proteolysis, degradation or Protein targeting, export) through the product ...
often occurs for many proteins. This may involve removal of the
N-terminal The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical ro ...
,
signal peptide A signal peptide (sometimes referred to as signal sequence, targeting signal, localization signal, localization sequence, transit peptide, leader sequence or leader peptide) is a short peptide (usually 16-30 amino acids long) present at the N-ter ...
, and/or the conversion of an inactive or non-functional protein to an active one. The precursor to the final functional form of protein is termed
proprotein A protein precursor, also called a pro-protein or pro-peptide, is an inactive protein (or peptide) that can be turned into an active form by post-translational modification, such as breaking off a piece of the molecule or adding on another molecule ...
, and these proproteins may be first synthesized as preproprotein. For example, albumin is first synthesized as preproalbumin and contains an uncleaved signal peptide. This forms the proalbumin after the signal peptide is cleaved, and a further processing to remove the N-terminal 6-residue propeptide yields the mature form of the protein.


Removal of N-terminal methionine

The initiating methionine (and, in prokaryotes,
fMet ''N''-Formylmethionine (fMet, HCO-Met, For-Met) is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar g ...
) may be removed during translation of the nascent protein. For ''
E. coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
'', fMet is efficiently removed if the second residue is small and uncharged, but not if the second residue is bulky and charged. In both
prokaryotes A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
and
eukaryotes Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
, the exposed N-terminal residue may determine the half-life of the protein according to the N-end rule.


Removal of the signal sequence

Proteins that are to be targeted to a particular organelle or for secretion have an N-terminal
signal peptide A signal peptide (sometimes referred to as signal sequence, targeting signal, localization signal, localization sequence, transit peptide, leader sequence or leader peptide) is a short peptide (usually 16-30 amino acids long) present at the N-ter ...
that directs the protein to its final destination. This signal peptide is removed by proteolysis after their transport through a membrane.


Cleavage of polyproteins

Some proteins and most eukaryotic polypeptide hormones are synthesized as a large precursor polypeptide known as a polyprotein that requires proteolytic cleavage into individual smaller polypeptide chains. The polyprotein pro-opiomelanocortin (POMC) contains many polypeptide hormones. The cleavage pattern of POMC, however, may vary between different tissues, yielding different sets of polypeptide hormones from the same polyprotein. Many viruses also produce their proteins initially as a single polypeptide chain that were translated from a polycistronic mRNA. This polypeptide is subsequently cleaved into individual polypeptide chains. Common names for the polyprotein include ''gag'' (
group-specific antigen Group-specific antigen, or gag, is the polyprotein that contains the core structural proteins of an Ortervirus (except ''Caulimoviridae''). It was named as such because scientists used to believe it was antigenic. Now it is known that it makes up ...
) in
retrovirus A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase ...
es and ''
ORF1ab ORF1ab (also ORF1a/b) refers collectively to two open reading frames (ORFs), ORF1a and ORF1b, that are conserved in the genomes of nidoviruses, a group of viruses that includes coronaviruses. The genes express large polyproteins that undergo pro ...
'' in
Nidovirales ''Nidovirales'' is an order of enveloped, positive-strand RNA viruses which infect vertebrates and invertebrates. Host organisms include mammals, birds, reptiles, amphibians, fish, arthropods, molluscs, and helminths. The order includes the fami ...
. The latter name refers to the fact that a slippery sequence in the mRNA that codes for the polypeptide causes
ribosomal frameshift Ribosomal frameshifting, also known as translational frameshifting or translational recoding, is a biological phenomenon that occurs during translation that results in the production of multiple, unique proteins from a single mRNA. The process can ...
ing, leading to two different lengths of peptidic chains (''a'' and ''ab'') at an approximately fixed ratio.


Cleavage of precursor proteins

Many proteins and hormones are synthesized in the form of their precursors - zymogens,
proenzyme In biochemistry, a zymogen (), also called a proenzyme (), is an inactive precursor of an enzyme. A zymogen requires a biochemical change (such as a hydrolysis reaction revealing the active site, or changing the configuration to reveal the active ...
s, and
prehormone A prehormone is a biochemical substance secreted by glandular tissue and has minimal or no significant biological activity, but it is converted in peripheral tissues into an active hormone. Calcifediol is an example of a prehormone which is produc ...
s. These proteins are cleaved to form their final active structures.
Insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism o ...
, for example, is synthesized as
preproinsulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main Anabolism, anabolic hormone of the body. It regulates the m ...
, which yields proinsulin after the signal peptide has been cleaved. The proinsulin is then cleaved at two positions to yield two polypeptide chains linked by two disulfide bonds. Removal of two C-terminal residues from the B-chain then yields the mature insulin. Protein folding occurs in the single-chain proinsulin form which facilitates formation of the ultimate inter-peptide disulfide bonds, and the ultimate intra-peptide disulfide bond, found in the native structure of insulin. Proteases in particular are synthesized in the inactive form so that they may be safely stored in cells, and ready for release in sufficient quantity when required. This is to ensure that the protease is activated only in the correct location or context, as inappropriate activation of these proteases can be very destructive for an organism. Proteolysis of the zymogen yields an active protein; for example, when trypsinogen is cleaved to form trypsin, a slight rearrangement of the protein structure that completes the active site of the protease occurs, thereby activating the protein. Proteolysis can, therefore, be a method of regulating biological processes by turning inactive proteins into active ones. A good example is the
blood clotting cascade Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the ci ...
whereby an initial event triggers a cascade of sequential proteolytic activation of many specific proteases, resulting in blood coagulation. The
complement system The complement system, also known as complement cascade, is a part of the immune system that enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, promote inflammation, and at ...
of the immune response also involves a complex sequential proteolytic activation and interaction that result in an attack on invading pathogens.


Protein degradation

Protein degradation may take place intracellularly or extracellularly. In digestion of food, digestive enzymes may be released into the environment for extracellular digestion whereby proteolytic cleavage breaks proteins into smaller peptides and amino acids so that they may be absorbed and used. In animals the food may be processed extracellularly in specialized organs or guts, but in many bacteria the food may be internalized via phagocytosis. Microbial degradation of protein in the environment can be regulated by nutrient availability. For example, limitation for major elements in proteins (carbon, nitrogen, and sulfur) induces proteolytic activity in the fungus '' Neurospora crassa'' as well as in of soil organism communities. Proteins in cells are broken into amino acids. This intracellular degradation of protein serves multiple functions: It removes damaged and abnormal proteins and prevents their accumulation. It also serves to regulate cellular processes by removing enzymes and regulatory proteins that are no longer needed. The amino acids may then be reused for protein synthesis.


Lysosome and proteasome

The intracellular degradation of protein may be achieved in two ways - proteolysis in lysosome, or a ubiquitin-dependent process that targets unwanted proteins to
proteasome Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are part of a major mechanism by w ...
. The
autophagy Autophagy (or autophagocytosis; from the Ancient Greek , , meaning "self-devouring" and , , meaning "hollow") is the natural, conserved degradation of the cell that removes unnecessary or dysfunctional components through a lysosome-dependent re ...
-lysosomal pathway is normally a non-selective process, but it may become selective upon starvation whereby proteins with peptide sequence KFERQ or similar are selectively broken down. The lysosome contains a large number of proteases such as cathepsins. The ubiquitin-mediated process is selective. Proteins marked for degradation are covalently linked to ubiquitin. Many molecules of ubiquitin may be linked in tandem to a protein destined for degradation. The polyubiquinated protein is targeted to an ATP-dependent protease complex, the proteasome. The ubiquitin is released and reused, while the targeted protein is degraded.


Rate of intracellular protein degradation

Different proteins are degraded at different rates. Abnormal proteins are quickly degraded, whereas the rate of degradation of normal proteins may vary widely depending on their functions. Enzymes at important metabolic control points may be degraded much faster than those enzymes whose activity is largely constant under all physiological conditions. One of the most rapidly degraded proteins is ornithine decarboxylase, which has a half-life of 11 minutes. In contrast, other proteins like actin and
myosin Myosins () are a superfamily of motor proteins best known for their roles in muscle contraction and in a wide range of other motility processes in eukaryotes. They are ATP-dependent and responsible for actin-based motility. The first myosin ...
have a half-life of a month or more, while, in essence, haemoglobin lasts for the entire life-time of an erythrocyte. The N-end rule may partially determine the half-life of a protein, and proteins with segments rich in
proline Proline (symbol Pro or P) is an organic acid classed as a proteinogenic amino acid (used in the biosynthesis of proteins), although it does not contain the amino group but is rather a secondary amine. The secondary amine nitrogen is in the prot ...
,
glutamic acid Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synt ...
,
serine Serine (symbol Ser or S) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated − form under biological conditions), a carboxyl group (which is in the deprotonated − form un ...
, and
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
(the so-called PEST proteins) have short half-life. Other factors suspected to affect degradation rate include the rate deamination of glutamine and asparagine and oxidation of cystein, histidine, and methionine, the absence of stabilizing ligands, the presence of attached carbohydrate or phosphate groups, the presence of free α-amino group, the negative charge of protein, and the flexibility and stability of the protein. Proteins with larger degrees of intrinsic disorder also tend to have short cellular half-life, with disordered segments having been proposed to facilitate efficient initiation of degradation by the
proteasome Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are part of a major mechanism by w ...
. The rate of proteolysis may also depend on the physiological state of the organism, such as its hormonal state as well as nutritional status. In time of starvation, the rate of protein degradation increases.


Digestion

In human digestion, proteins in food are broken down into smaller peptide chains by digestive enzymes such as pepsin, trypsin,
chymotrypsin Chymotrypsin (, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenu ...
, and elastase, and into amino acids by various enzymes such as
carboxypeptidase A carboxypeptidase ( EC number 3.4.16 - 3.4.18) is a protease enzyme that hydrolyzes (cleaves) a peptide bond at the carboxy-terminal (C-terminal) end of a protein or peptide. This is in contrast to an aminopeptidases, which cleave peptide bonds at ...
, aminopeptidase, and dipeptidase. It is necessary to break down proteins into small peptides (tripeptides and dipeptides) and amino acids so they can be absorbed by the intestines, and the absorbed tripeptides and dipeptides are also further broken into amino acids intracellularly before they enter the bloodstream. Different enzymes have different specificity for their substrate; trypsin, for example, cleaves the peptide bond after a positively charged residue (
arginine Arginine is the amino acid with the formula (H2N)(HN)CN(H)(CH2)3CH(NH2)CO2H. The molecule features a guanidino group appended to a standard amino acid framework. At physiological pH, the carboxylic acid is deprotonated (−CO2−) and both the am ...
and
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −C ...
); chymotrypsin cleaves the bond after an aromatic residue (
phenylalanine Phenylalanine (symbol Phe or F) is an essential α-amino acid with the formula . It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino a ...
, tyrosine, and tryptophan); elastase cleaves the bond after a small non-polar residue such as alanine or glycine. In order to prevent inappropriate or premature activation of the digestive enzymes (they may, for example, trigger pancreatic self-digestion causing pancreatitis), these enzymes are secreted as inactive zymogen. The precursor of pepsin,
pepsinogen Pepsin is an endopeptidase that breaks down proteins into smaller peptides. It is produced in the gastric chief cells of the stomach lining and is one of the main digestive enzymes in the digestive systems of humans and many other animals, whe ...
, is secreted by the stomach, and is activated only in the acidic environment found in stomach. The pancreas secretes the precursors of a number of proteases such as trypsin and
chymotrypsin Chymotrypsin (, chymotrypsins A and B, alpha-chymar ophth, avazyme, chymar, chymotest, enzeon, quimar, quimotrase, alpha-chymar, alpha-chymotrypsin A, alpha-chymotrypsin) is a digestive enzyme component of pancreatic juice acting in the duodenu ...
. The zymogen of trypsin is trypsinogen, which is activated by a very specific protease,
enterokinase Enteropeptidase (also called enterokinase) is an enzyme produced by cells of the duodenum and is involved in digestion in humans and other animals. Enteropeptidase converts trypsinogen (a zymogen) into its active form trypsin, resulting in the ...
, secreted by the
mucosa A mucous membrane or mucosa is a membrane that lines various cavities in the body of an organism and covers the surface of internal organs. It consists of one or more layers of epithelial cells overlying a layer of loose connective tissue. It is ...
of the
duodenum The duodenum is the first section of the small intestine in most higher vertebrates, including mammals, reptiles, and birds. In fish, the divisions of the small intestine are not as clear, and the terms anterior intestine or proximal intestine m ...
. The trypsin, once activated, can also cleave other trypsinogens as well as the precursors of other proteases such as chymotrypsin and carboxypeptidase to activate them. In bacteria, a similar strategy of employing an inactive zymogen or prezymogen is used.
Subtilisin Subtilisin is a protease (a protein-digesting enzyme) initially obtained from ''Bacillus subtilis''. Subtilisins belong to subtilases, a group of serine proteases that – like all serine proteases – initiate the nucleophilic attack on the p ...
, which is produced by '' Bacillus subtilis'', is produced as preprosubtilisin, and is released only if the signal peptide is cleaved and autocatalytic proteolytic activation has occurred.


Cellular regulation

Proteolysis is also involved in the regulation of many cellular processes by activating or deactivating enzymes, transcription factors, and receptors, for example in the biosynthesis of cholesterol, or the mediation of thrombin signalling through protease-activated receptors. Some enzymes at important metabolic control points such as ornithine decarboxylase is regulated entirely by its rate of synthesis and its rate of degradation. Other rapidly degraded proteins include the protein products of proto-oncogenes, which play central roles in the regulation of cell growth.


Cell cycle regulation

Cyclins Cyclin is a family of proteins that controls the progression of a cell through the cell cycle by activating cyclin-dependent kinase (CDK) enzymes or group of enzymes required for synthesis of cell cycle. Etymology Cyclins were originally disco ...
are a group of proteins that activate
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
s involved in cell division. The degradation of cyclins is the key step that governs the exit from
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
and progress into the next cell cycle. Cyclins accumulate in the course the cell cycle, then abruptly disappear just before the anaphase of mitosis. The cyclins are removed via a ubiquitin-mediated proteolytic pathway.


Apoptosis

Caspase Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death. They are named caspases due to their specific cystei ...
s are an important group of proteases involved in
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
or programmed cell death. The precursors of caspase, procaspase, may be activated by proteolysis through its association with a protein complex that forms apoptosome, or by granzyme B, or via the death receptor pathways.


Autoproteolysis

Autoproteolysis takes place in some proteins, whereby the
peptide bond In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein cha ...
is cleaved in a self-catalyzed
intramolecular reaction Intramolecular in chemistry describes a process or characteristic limited within the structure of a single molecule, a property or phenomenon limited to the extent of a single molecule. Examples * intramolecular hydride transfer (transfer of a hy ...
. Unlike zymogens, these autoproteolytic proteins participate in a "single turnover" reaction and do not catalyze further reactions post-cleavage. Examples include cleavage of the Asp-Pro bond in a subset of von Willebrand factor type D (VWD) domains and '' Neisseria meningitidis'' FrpC self-processing domain, cleavage of the Asn-Pro bond in ''
Salmonella ''Salmonella'' is a genus of rod-shaped (bacillus) Gram-negative bacteria of the family Enterobacteriaceae. The two species of ''Salmonella'' are ''Salmonella enterica'' and ''Salmonella bongori''. ''S. enterica'' is the type species and is fur ...
'' FlhB protein, '' Yersinia'' YscU protein, as well as cleavage of the Gly-Ser bond in a subset of sea urchin sperm protein, enterokinase, and agrin (SEA) domains. In some cases, the autoproteolytic cleavage is promoted by conformational strain of the peptide bond.


Proteolysis and diseases

Abnormal proteolytic activity is associated with many diseases. In pancreatitis, leakage of proteases and their premature activation in the pancreas results in the self-digestion of the pancreas. People with diabetes mellitus may have increased lysosomal activity and the degradation of some proteins can increase significantly. Chronic inflammatory diseases such as rheumatoid arthritis may involve the release of lysosomal enzymes into extracellular space that break down surrounding tissues. Abnormal proteolysis may result in many age-related neurological diseases such as
Alzheimer Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens. It is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As t ...
's due to generation and ineffective removal of peptides that aggregate in cells. Proteases may be regulated by
antiprotease In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases (enzymes that aid the breakdown of proteins). Many naturally occurring protease inhibitors are proteins. In medicine, ''prot ...
s or protease inhibitors, and imbalance between proteases and antiproteases can result in diseases, for example, in the destruction of lung tissues in
emphysema Emphysema, or pulmonary emphysema, is a lower respiratory tract disease, characterised by air-filled spaces ( pneumatoses) in the lungs, that can vary in size and may be very large. The spaces are caused by the breakdown of the walls of the alve ...
brought on by
smoking Smoking is a practice in which a substance is burned and the resulting smoke is typically breathed in to be tasted and absorbed into the bloodstream. Most commonly, the substance used is the dried leaves of the tobacco plant, which have bee ...
tobacco. Smoking is thought to increase the
neutrophils Neutrophils (also known as neutrocytes or heterophils) are the most abundant type of granulocytes and make up 40% to 70% of all white blood cells in humans. They form an essential part of the innate immune system, with their functions varying in ...
and macrophages in the lung which release excessive amount of proteolytic enzymes such as elastase, such that they can no longer be inhibited by serpins such as α1-antitrypsin, thereby resulting in the breaking down of connective tissues in the lung. Other proteases and their inhibitors may also be involved in this disease, for example matrix metalloproteinases (MMPs) and
tissue inhibitors of metalloproteinases Tissue inhibitors of metalloproteinases (TIMPs) are specific endogenous protease inhibitors to the matrix metalloproteinases. There are four TIMPs; '' TIMP1'', ''TIMP2'', ''TIMP3'' and '' TIMP4''. TIMP3 has been observed progressively downregulated ...
(TIMPs). Other diseases linked to aberrant proteolysis include
muscular dystrophy Muscular dystrophies (MD) are a genetically and clinically heterogeneous group of rare neuromuscular diseases that cause progressive weakness and breakdown of skeletal muscles over time. The disorders differ as to which muscles are primarily affe ...
, degenerative skin disorders, respiratory and gastrointestinal diseases, and malignancy.


Non-enzymatic processes

Protein backbones are very stable in water at neutral pH and room temperature, although the rate of hydrolysis of different peptide bonds can vary. The half life of a peptide bond under normal conditions can range from 7 years to 350 years, even higher for peptides protected by modified terminus or within the protein interior. The rate of hydrolysis however can be significantly increased by extremes of pH and heat. Spontaneous cleavage of proteins may also involve catalysis by zinc on serine and threonine. Strong
mineral acids A mineral acid (or inorganic acid) is an acid derived from one or more inorganic compounds, as opposed to organic acids which are acidic, organic compounds. All mineral acids form hydrogen ions and the conjugate base when dissolved in water. Char ...
can readily hydrolyse the peptide bonds in a protein ( acid hydrolysis). The standard way to hydrolyze a protein or peptide into its constituent amino acids for analysis is to heat it to 105 °C for around 24 hours in 6M hydrochloric acid. However, some proteins are resistant to acid hydrolysis. One well-known example is ribonuclease A, which can be purified by treating crude extracts with hot
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
so that other proteins become degraded while ribonuclease A is left intact. Certain chemicals cause proteolysis only after specific residues, and these can be used to selectively break down a protein into smaller polypeptides for laboratory analysis. For example, cyanogen bromide cleaves the peptide bond after a
methionine Methionine (symbol Met or M) () is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical ro ...
. Similar methods may be used to specifically cleave tryptophanyl, aspartyl, cysteinyl, and
asparagin Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
yl peptide bonds. Acids such as trifluoroacetic acid and
formic acid Formic acid (), systematically named methanoic acid, is the simplest carboxylic acid, and has the chemical formula HCOOH and structure . It is an important intermediate in chemical synthesis and occurs naturally, most notably in some ants. Es ...
may be used for cleavage. Like other biomolecules, proteins can also be broken down by high heat alone. At 250 °C, the peptide bond may be easily hydrolyzed, with its half-life dropping to about a minute. Protein may also be broken down without hydrolysis through pyrolysis; small
heterocyclic compound A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and ...
s may start to form upon degradation. Above 500 °C, polycyclic aromatic hydrocarbons may also form, which is of interest in the study of generation of carcinogens in tobacco smoke and cooking at high heat.


Laboratory applications

Proteolysis is also used in research and diagnostic applications: * Cleavage of
fusion protein Fusion proteins or chimeric (kī-ˈmir-ik) proteins (literally, made of parts from different sources) are proteins created through the joining of two or more genes that originally coded for separate proteins. Translation of this ''fusion gene'' r ...
so that the fusion partner and protein tag used in protein expression and purification may be removed. The proteases used have high degree of specificity, such as thrombin,
enterokinase Enteropeptidase (also called enterokinase) is an enzyme produced by cells of the duodenum and is involved in digestion in humans and other animals. Enteropeptidase converts trypsinogen (a zymogen) into its active form trypsin, resulting in the ...
, and TEV protease, so that only the targeted sequence may be cleaved. * Complete inactivation of undesirable enzymatic activity or removal of unwanted proteins. For example, proteinase K, a broad-spectrum proteinase stable in urea and SDS, is often used in the preparation of nucleic acids to remove unwanted
nuclease A nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their ta ...
contaminants that may otherwise degrade the DNA or RNA. * Partial inactivation, or changing the functionality, of specific protein. For example, treatment of
DNA polymerase I DNA polymerase I (or Pol I) is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, it was the first known DNA polymerase (and the first known of any kind of polymerase). It was initiall ...
with
subtilisin Subtilisin is a protease (a protein-digesting enzyme) initially obtained from ''Bacillus subtilis''. Subtilisins belong to subtilases, a group of serine proteases that – like all serine proteases – initiate the nucleophilic attack on the p ...
yields the
Klenow fragment The Klenow fragment is a large protein fragment produced when DNA polymerase I from '' E. coli'' is enzymatically cleaved by the protease subtilisin. First reported in 1970, it retains the 5' → 3' polymerase activity and the 3’ → 5’ ex ...
, which retains its polymerase function but lacks 5'-exonuclease activity. * Digestion of proteins in solution for proteome analysis by liquid chromatography-mass spectrometry (LC-MS). This may also be done by in-gel digestion of
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
after separation by
gel electrophoresis Gel electrophoresis is a method for separation and analysis of biomacromolecules ( DNA, RNA, proteins, etc.) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size (IEF ...
for the identification by
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
. * Analysis of the stability of folded domain under a wide range of conditions. * Increasing success rate of crystallisation projects * Production of digested protein used in growth media to culture bacteria and other organisms, e.g.
tryptone Tryptone is the assortment of peptides formed by the digestion of casein by the protease trypsin. Tryptone is commonly used in microbiology to produce lysogeny broth (LB) for the growth of '' E. coli'' and other microorganisms. It provides a so ...
in Lysogeny Broth.


Protease enzymes

Proteases may be classified according to the catalytic group involved in its active site. * Cysteine protease * Serine protease * Threonine protease * Aspartic protease *
Glutamic protease Glutamic proteases are a group of proteolytic enzymes containing a glutamic acid residue within the active site. This type of protease was first described in 2004 and became the sixth catalytic type of protease. Members of this group of protease ha ...
* Metalloprotease *
Asparagine peptide lyase Asparagine peptide lyase are one of the seven groups in which proteases, also termed proteolytic enzymes, peptidases, or proteinases, are classified according to their catalytic residue. The catalytic mechanism of the asparagine peptide lyases invo ...


Venoms

Certain types of venom, such as those produced by venomous snakes, can also cause proteolysis. These venoms are, in fact, complex digestive fluids that begin their work outside of the body. Proteolytic venoms cause a wide range of toxic effects,Hayes WK. 2005
Research on Biological Roles and Variation of Snake Venoms.
Loma Linda University.
including effects that are: *
cytotoxic Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa''). Cell physiology Treating cells ...
(cell-destroying) * hemotoxic (blood-destroying) * myotoxic (muscle-destroying) * hemorrhagic (bleeding)


See also

* The Proteolysis Map * PROTOMAP a proteomic technology for identifying proteolytic substrates *
Proteasome Proteasomes are protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are part of a major mechanism by w ...
* In-gel digestion * Ubiquitin


References


Further reading

*


External links


The Journal of Proteolysis
is an open access journal that provides an international forum for the electronic publication of the whole spectrum of high-quality articles and reviews in all areas of proteolysis and proteolytic pathways.
Proteolysis MAP from Center on Proteolytic Pathways
{{Enzymes Post-translational modification Metabolism EC 3.4