This is a glossary of some terms used in
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a ''Riemannian metric'', i.e. with an inner product on the tangent space at each point that varies smoothly from point to po ...
and
metric geometry
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setti ...
— it doesn't cover the terminology of
differential topology
In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which ...
.
The following articles may also be useful; they either contain specialised vocabulary or provide more detailed expositions of the definitions given below.
*
Connection
*
Curvature
In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane.
For curves, the can ...
*
Metric space
In mathematics, a metric space is a set together with a notion of '' distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general sett ...
*
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
See also:
*
Glossary of general topology
*
Glossary of differential geometry and topology
This is a glossary of terms specific to differential geometry and differential topology. The following three glossaries are closely related:
*Glossary of general topology
*Glossary of algebraic topology
*Glossary of Riemannian and metric geometr ...
*
List of differential geometry topics
Unless stated otherwise, letters ''X'', ''Y'', ''Z'' below denote metric spaces, ''M'', ''N'' denote Riemannian manifolds, , ''xy'', or
denotes the distance between points ''x'' and ''y'' in ''X''. Italic ''word'' denotes a self-reference to this glossary.
''A caveat'': many terms in Riemannian and metric geometry, such as ''convex function'', ''convex set'' and others, do not have exactly the same meaning as in general mathematical usage.
__NOTOC__
A
Alexandrov space a generalization of Riemannian manifolds with upper, lower or integral curvature bounds (the last one works only in dimension 2)
Almost flat manifold
Arc-wise isometry the same as ''path isometry''.
Autoparallel the same as ''totally geodesic''
B
Barycenter, see ''center of mass''.
bi-Lipschitz map. A map
is called bi-Lipschitz if there are positive constants ''c'' and ''C'' such that for any ''x'' and ''y'' in ''X''
:
Busemann function given a ''
ray
Ray may refer to:
Fish
* Ray (fish), any cartilaginous fish of the superorder Batoidea
* Ray (fish fin anatomy), a bony or horny spine on a fin
Science and mathematics
* Ray (geometry), half of a line proceeding from an initial point
* Ray (g ...
'', γ :
0, ∞)→''X'', the Busemann function is defined by
:
C
Cartan–Hadamard theorem">Conjugation -->
Cartan–Hadamard theorem is the statement that a connected, simply connected complete Riemannian manifold with non-positive sectional curvature is diffeomorphic to Rn via the exponential map; for metric spaces, the statement that a connected, simply connected complete geodesic metric space with non-positive curvature in the sense of Alexandrov is a (globally) CAT(0) space.
Élie Cartan, Cartan extended Einstein's General relativity to Einstein–Cartan theory, using Riemannian-Cartan geometry instead of Riemannian geometry. This extension provides affine torsion, which allows for non-symmetric curvature tensors and the incorporation of spin–orbit coupling.
Center of mass. A point ''q'' ∈ ''M'' is called the center of mass of the points if it is a point of global minimum of the function
:
Such a point is unique if all distances are less than ''radius of convexity''.
Christoffel symbol
In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing dis ...
Collapsing manifold
In Riemannian geometry, a collapsing or collapsed manifold is an ''n''-dimensional manifold ''M'' that admits a sequence of Riemannian metrics ''g'i'', such that as ''i'' goes to infinity the manifold is close to a ''k''-dimensional space, wh ...
Complete space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in .
Intuitively, a space is complete if there are no "points missing" from it (inside or at the boun ...
Completion
Conformal map
In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.
More formally, let U and V be open subsets of \mathbb^n. A function f:U\to V is called conformal (or angle-preserving) at a point u_0\in ...
is a map which preserves angles.
Conformally flat a manifold ''M'' is conformally flat if it is locally conformally equivalent to a Euclidean space, for example standard sphere is conformally flat.
Conjugate points
In differential geometry, conjugate points or focal points are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoin ...
two points ''p'' and ''q'' on a geodesic are called conjugate if there is a Jacobi field on which has a zero at ''p'' and ''q''.
Convex function
In mathematics, a real-valued function is called convex if the line segment between any two points on the graph of the function lies above the graph between the two points. Equivalently, a function is convex if its epigraph (the set of poin ...
. A function ''f'' on a Riemannian manifold is a convex if for any geodesic the function is convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
. A function ''f'' is called -convex if for any geodesic with natural parameter , the function is convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
.
Convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytop ...
A subset ''K'' of a Riemannian manifold ''M'' is called convex if for any two points in ''K'' there is a ''shortest path'' connecting them which lies entirely in ''K'', see also ''totally convex''.
Cotangent bundle
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This ...
Covariant derivative
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differ ...
Cut locus
D
Diameter of a metric space is the supremum of distances between pairs of points.
Developable surface is a surface isometric
The term ''isometric'' comes from the Greek for "having equal measurement".
isometric may mean:
* Cubic crystal system, also called isometric crystal system
* Isometre, a rhythmic technique in music.
* "Isometric (Intro)", a song by Madeon from ...
to the plane.
Dilation of a map between metric spaces is the infimum of numbers ''L'' such that the given map is ''L''-Lipschitz Lipschitz, Lipshitz, or Lipchitz, is an Ashkenazi Jewish (Yiddish/German-Jewish) surname. The surname has many variants, including: Lifshitz (Lifschitz), Lifshits, Lifshuts, Lefschetz; Lipschitz, Lipshitz, Lipshits, Lopshits, Lipschutz (Lipschütz ...
.
E
Exponential map: Exponential map (Lie theory)
In the theory of Lie groups, the exponential map is a map from the Lie algebra \mathfrak g of a Lie group G to the group, which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of ...
, Exponential map (Riemannian geometry)
F
Finsler metric
First fundamental form for an embedding or immersion is the pullback of the metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allo ...
.
G
Geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
is a curve
In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight.
Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
which locally minimizes distance
Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
.
Geodesic flow is a flow
Flow may refer to:
Science and technology
* Fluid flow, the motion of a gas or liquid
* Flow (geomorphology), a type of mass wasting or slope movement in geomorphology
* Flow (mathematics), a group action of the real numbers on a set
* Flow (psych ...
on a tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
''TM'' of a manifold ''M'', generated by a vector field whose trajectories
A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete traj ...
are of the form where is a geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
.
Gromov-Hausdorff convergence
Geodesic metric space is a metric space where any two points are the endpoints of a minimizing geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
.
H
Hadamard space is a complete simply connected space with nonpositive curvature.
Horosphere a level set of ''Busemann function''.
I
Injectivity radius The injectivity radius at a point ''p'' of a Riemannian manifold is the largest radius for which the exponential map at ''p'' is a diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.
Definition
Given tw ...
. The injectivity radius of a Riemannian manifold is the infimum of the injectivity radii at all points. See also cut locus.
For complete manifolds, if the injectivity radius at ''p'' is a finite number ''r'', then either there is a geodesic of length 2''r'' which starts and ends at ''p'' or there is a point ''q'' conjugate to ''p'' (see conjugate point above) and on the distance ''r'' from ''p''. For a closed Riemannian manifold the injectivity radius is either half the minimal length of a closed geodesic or the minimal distance between conjugate points on a geodesic.
Infranilmanifold Given a simply connected nilpotent Lie group ''N'' acting on itself by left multiplication and a finite group of automorphisms ''F'' of ''N'' one can define an action of the semidirect product
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:
* an ''inner'' semidirect product is a particular way in w ...
on ''N''. An orbit space of ''N'' by a discrete subgroup of which acts freely on ''N'' is called an ''infranilmanifold''. An infranilmanifold is finitely covered by a nilmanifold.
Isometry
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' mea ...
is a map which preserves distances.
Intrinsic metric In the mathematical study of metric spaces, one can consider the arclength of paths in the space. If two points are at a given distance from each other, it is natural to expect that one should be able to get from the first point to the second a ...
J
Jacobi field A Jacobi field is a vector field on a geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
γ which can be obtained on the following way: Take a smooth one parameter family of geodesics with , then the Jacobi field is described by
:
Jordan curve
K
Killing vector field
In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal gen ...
L
Length metric the same as ''intrinsic metric''.
Levi-Civita connection
In Riemannian or pseudo Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold (i.e. affine connection) that preserves ...
is a natural way to differentiate vector fields on Riemannian manifolds.
Lipschitz convergence the convergence defined by Lipschitz metric.
Lipschitz distance between metric spaces is the infimum of numbers ''r'' such that there is a bijective ''bi-Lipschitz'' map between these spaces with constants exp(-''r''), exp(''r'').
Lipschitz map
Logarithmic map is a right inverse of Exponential map.
M
Mean curvature In mathematics, the mean curvature H of a surface S is an ''extrinsic'' measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.
T ...
Metric ball
Metric tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allo ...
Minimal surface is a submanifold with (vector of) mean curvature zero.
N
Natural parametrization is the parametrization by length.
Net. A subset ''S'' of a metric space ''X'' is called -net if for any point in ''X'' there is a point in ''S'' on the distance . This is distinct from topological nets which generalize limits.
Nilmanifold: An element of the minimal set of manifolds which includes a point, and has the following property: any oriented -bundle over a nilmanifold is a nilmanifold. It also can be defined as a factor of a connected nilpotent
In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0.
The term was introduced by Benjamin Peirce in the context of his work on the cl ...
Lie group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the addit ...
by a lattice.
Normal bundle
In differential geometry, a field of mathematics, a normal bundle is a particular kind of vector bundle, complementary to the tangent bundle, and coming from an embedding (or immersion).
Definition
Riemannian manifold
Let (M,g) be a Riemann ...
: associated to an imbedding of a manifold ''M'' into an ambient Euclidean space , the normal bundle is a vector bundle whose fiber at each point ''p'' is the orthogonal complement (in ) of the tangent space .
Nonexpanding map same as ''short map''
P
Parallel transport
In geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent b ...
Polyhedral space a simplicial complex
In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their ''n''-dimensional counterparts (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial ...
with a metric such that each simplex with induced metric is isometric to a simplex in Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
.
Principal curvature is the maximum and minimum normal curvatures at a point on a surface.
Principal direction is the direction of the principal curvatures.
Path isometry
Proper metric space is a metric space in which every closed ball is compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
. Equivalently, if every closed bounded subset is compact. Every proper metric space is complete.
Q
Quasigeodesic has two meanings; here we give the most common. A map (where is a subsegment) is called a ''quasigeodesic'' if there are constants and such that for every
:
Note that a quasigeodesic is not necessarily a continuous curve.
Quasi-isometry In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. ...
. A map is called a ''quasi-isometry'' if there are constants and such that
:
and every point in ''Y'' has distance at most ''C'' from some point of ''f''(''X'').
Note that a quasi-isometry is not assumed to be continuous. For example, any map between compact metric spaces is a quasi isometry. If there exists a quasi-isometry from X to Y, then X and Y are said to be quasi-isometric.
R
Radius of metric space is the infimum of radii of metric balls which contain the space completely.
Radius of convexity at a point ''p'' of a Riemannian manifold is the largest radius of a ball which is a ''convex'' subset.
Ray is a one side infinite geodesic which is minimizing on each interval
Riemann curvature tensor
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds ...
Riemannian manifold
In differential geometry, a Riemannian manifold or Riemannian space , so called after the German mathematician Bernhard Riemann, is a real, smooth manifold ''M'' equipped with a positive-definite inner product ''g'p'' on the tangent spac ...
Riemannian submersion is a map between Riemannian manifolds which is submersion and ''submetry'' at the same time.
S
Second fundamental form is a quadratic form on the tangent space of hypersurface, usually denoted by II, an equivalent way to describe the ''shape operator'' of a hypersurface,
:
It can be also generalized to arbitrary codimension, in which case it is a quadratic form with values in the normal space.
Shape operator for a hypersurface ''M'' is a linear operator on tangent spaces, ''S''''p'': ''T''''p''''M''→''T''''p''''M''. If ''n'' is a unit normal field to ''M'' and ''v'' is a tangent vector then
:
(there is no standard agreement whether to use + or − in the definition).
Short map is a distance non increasing map.
Smooth manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One m ...
Sol manifold is a factor of a connected solvable Lie group by a lattice.
Submetry
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.
The following articles may also be useful; they either contain specialised vocabulary or provid ...
a short map ''f'' between metric spaces is called a submetry if there exists ''R > 0'' such that for any point ''x'' and radius ''r < R'' we have that image of metric ''r''-ball is an ''r''-ball, i.e.
:
Sub-Riemannian manifold
In mathematics, a sub-Riemannian manifold is a certain type of generalization of a Riemannian manifold. Roughly speaking, to measure distances in a sub-Riemannian manifold, you are allowed to go only along curves tangent to so-called ''horizontal ...
Systole
Systole ( ) is the part of the cardiac cycle during which some chambers of the heart contract after refilling with blood. The term originates, via New Latin, from Ancient Greek (''sustolē''), from (''sustéllein'' 'to contract'; from ' ...
. The ''k''-systole of ''M'', , is the minimal volume of ''k''-cycle nonhomologous to zero.
T
Tangent bundle
In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and ...
Totally convex. A subset ''K'' of a Riemannian manifold ''M'' is called totally convex if for any two points in ''K'' any geodesic connecting them lies entirely in ''K'', see also ''convex''.
Totally geodesic submanifold is a ''submanifold'' such that all ''geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s'' in the submanifold are also geodesics of the surrounding manifold.
U
Uniquely geodesic metric space is a metric space where any two points are the endpoints of a unique minimizing geodesic
In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
.
W
Word metric on a group is a metric of the Cayley graph
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Ca ...
constructed using a set of generators.
{{DEFAULTSORT:Glossary Of Riemannian And Metric Geometry
Differential geometry
Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
*
*