HOME
*





Busemann Function
In geometric topology, Busemann functions are used to study the large-scale geometry of geodesics in Hadamard spaces and in particular Hadamard manifolds (simply connected complete Riemannian manifolds of nonpositive curvature). They are named after Herbert Busemann, who introduced them; he gave an extensive treatment of the topic in his 1955 book "The geometry of geodesics". Definition and elementary properties Let (X,d) be a metric space. A Ray (geometry), geodesic ray is a path \gamma : [0,\infty) \to X which minimizes distance everywhere along its length. i.e., for all t,t' \in [0,\infty), d\big(\gamma(t), \gamma(t') \big) = \big, t - t' \big, . Equivalently, a ray is an isometry from the "canonical ray" (the set [0,\infty) equipped with the Euclidean metric) into the metric space ''X''. Given a ray ''γ'', the Busemann function B_\gamma : X \to \mathbb R is defined by B_\gamma(x)=\lim_\big(d\big( \gamma(t), x \big) - t \big) Thus, when ''t'' is very large, the distan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Topology
In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of ''simple'' homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently. Differences between low-dimensional and high-dimensional topology Manifolds differ radically in behavior in high and low dimension. High-dimensional topology refers to manifolds of dimension 5 and above, or in relative terms, embeddings in codimension 3 and above. Low-dimensional topology is concerned with questions in dimensions up to 4, or embeddings in codimension up to 2. Dimension 4 is special, in that in some respects (topologica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasigeodesic
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology. The following articles may also be useful; they either contain specialised vocabulary or provide more detailed expositions of the definitions given below. * Connection * Curvature * Metric space * Riemannian manifold See also: * Glossary of general topology * Glossary of differential geometry and topology * List of differential geometry topics Unless stated otherwise, letters ''X'', ''Y'', ''Z'' below denote metric spaces, ''M'', ''N'' denote Riemannian manifolds, , ''xy'', or , xy, _X denotes the distance between points ''x'' and ''y'' in ''X''. Italic ''word'' denotes a self-reference to this glossary. ''A caveat'': many terms in Riemannian and metric geometry, such as ''convex function'', ''convex set'' and others, do not have exactly the same meaning as in general mathematical usage. __NOTOC__ A Alexandrov space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mostow Rigidity Theorem
Mostow may refer to: People * George Mostow (1923–2017), American mathematician ** Mostow rigidity theorem * Jonathan Mostow Jonathan Mostow (born November 28, 1961) is an American film director, screenwriter, and producer. He has directed films such as ''Breakdown (1997 film), Breakdown'', ''U-571 (film), U-571'', ''Terminator 3: Rise of the Machines'', and ''Surroga ... (born 1961), American movie and television director Places * Mostów, a village in Poland {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




George Mostow
George Daniel Mostow (July 4, 1923 – April 4, 2017) was an American mathematician, renowned for his contributions to Lie theory. He was the Henry Ford II (emeritus) Professor of Mathematics at Yale University, a member of the National Academy of Sciences, the 49th president of the American Mathematical Society (1987–1988), and a trustee of the Institute for Advanced Study from 1982 to 1992. The rigidity phenomenon for lattices in Lie groups he discovered and explored is known as Mostow rigidity. His work on rigidity played an essential role in the work of three Fields medalists, namely Grigori Margulis, William Thurston, and Grigori Perelman. In 1993 he was awarded the American Mathematical Society's Leroy P. Steele Prize for Seminal Contribution to Research. In 2013, he was awarded the Wolf Prize in Mathematics "for his fundamental and pioneering contribution to geometry and Lie group theory." Biography George (Dan) Mostow was born in 1923 in Boston, Massachusetts. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (''M'', ''g'') is said to be symmetric if and only if, for each point ''p'' of ''M'', there exists an isometry of ''M'' fixing ''p'' and acting on the tangent space T_pM as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetries about t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marston Morse
Harold Calvin Marston Morse (March 24, 1892 – June 22, 1977) was an American mathematician best known for his work on the ''calculus of variations in the large'', a subject where he introduced the technique of differential topology now known as Morse theory. The Morse–Palais lemma, one of the key results in Morse theory, is named after him, as is the Thue–Morse sequence, an infinite binary sequence with many applications. In 1933 he was awarded the Bôcher Memorial Prize for his work in mathematical analysis. Biography He was born in Waterville, Maine to Ella Phoebe Marston and Howard Calvin Morse in 1892. He received his bachelor's degree from Colby College (also in Waterville) in 1914. At Harvard University, he received both his master's degree in 1915 and his PhD in 1917. He wrote his PhD thesis, ''Certain Types of Geodesic Motion of a Surface of Negative Curvature'', under the direction of George David Birkhoff. Morse was a Benjamin Peirce Instructor at Harvard in 191 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equicontinuous
In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus ''sequences'' of functions. Equicontinuity appears in the formulation of Ascoli's theorem, which states that a subset of ''C''(''X''), the space of continuous functions on a compact Hausdorff space ''X'', is compact if and only if it is closed, pointwise bounded and equicontinuous. As a corollary, a sequence in ''C''(''X'') is uniformly convergent if and only if it is equicontinuous and converges pointwise to a function (not necessarily continuous a-priori). In particular, the limit of an equicontinuous pointwise convergent sequence of continuous functions ''fn'' on either metric space or locally compact space is continuous. If, in addition, ''fn'' are holomorphic, then the limit is also holomorphic. The uniform bounde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Arzelà–Ascoli Theorem
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators. The notion of equicontinuity was introduced in the late 19th century by the Italian mathematicians Cesare Arzelà and Giulio Ascoli. A weak form of the theorem was proven by , who established the sufficient condition for compactness, and by , who established the necessary condition and gave the first clear presentation of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf–Rinow Theorem
Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces. Statement Let (M, g) be a connected and smooth Riemannian manifold. Then the following statements are equivalent: # The closed and bounded subsets of M are compact; # M is a complete metric space; # M is geodesically complete; that is, for every p \in M, the exponential map exp''p'' is defined on the entire tangent space \operatorname_p M. Furthermore, any one of the above implies that given any two points p, q \in M, there exists a length minimizing geodesic connecting these two points (geodesics are in general critical points for the length functional, and may or may not be minima). In the Hopf–Rinow theorem, the first characterization of completeness deals purely with the topolog ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proper Metric Space
This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology. The following articles may also be useful; they either contain specialised vocabulary or provide more detailed expositions of the definitions given below. * Connection * Curvature * Metric space * Riemannian manifold See also: * Glossary of general topology * Glossary of differential geometry and topology * List of differential geometry topics Unless stated otherwise, letters ''X'', ''Y'', ''Z'' below denote metric spaces, ''M'', ''N'' denote Riemannian manifolds, , ''xy'', or , xy, _X denotes the distance between points ''x'' and ''y'' in ''X''. Italic ''word'' denotes a self-reference to this glossary. ''A caveat'': many terms in Riemannian and metric geometry, such as ''convex function'', ''convex set'' and others, do not have exactly the same meaning as in general mathematical usage. __NOTOC__ A Alexandrov space a gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mutatis Mutandi
''Mutatis mutandis'' is a Medieval Latin phrase meaning "with things changed that should be changed" or "once the necessary changes have been made". It remains unnaturalized in English and is therefore usually italicized in writing. It is used in many countries to acknowledge that a comparison being made requires certain obvious alterations, which are left unstated. It is not to be confused with the similar ''ceteris paribus'', which excludes any changes other than those explicitly mentioned. ''Mutatis mutandis'' is still used in law, economics, mathematics, linguistics and philosophy. In particular, in logic, it is encountered when discussing counterfactuals, as a shorthand for all the initial and derived changes which have been previously discussed. Latin The phrase '—now sometimes written ' to show vowel length—does not appear in surviving classical literature. It is Medieval Latin''Oxford English Dictionary'', 3rd ed. 'mutatis mutandis, ''adv. Oxford Unive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]