Proneural Genes
   HOME

TheInfoList



OR:

Proneural genes encode transcription factors of the basic helix-loop-helix (bHLH) class which are responsible for the development of neuroectodermal progenitor cells. Proneural genes have multiple functions in
neural development The development of the nervous system, or neural development (neurodevelopment), refers to the processes that generate, shape, and reshape the nervous system of animals, from the earliest stages of embryonic development to adulthood. The fie ...
. They integrate positional information and contribute to the specification of progenitor-cell identity. From the same
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
al cell types, neural or epidermal cells can develop based on interactions between proneural and neurogenic genes. Neurogenic genes are so called because loss of function mutants show an increase number of developed neural precursors. On the other hand, proneural genes mutants fail to develop neural precursor cells. The proneural genes are expressed in groups of cells (proneural clusters) from which one progenitor cell – typically the one in the middle – will be singled out, leading to the formation of many different types of neurons in the
central Central is an adjective usually referring to being in the center of some place or (mathematical) object. Central may also refer to: Directions and generalised locations * Central Africa, a region in the centre of Africa continent, also known as ...
and peripheral nervous systems. Proneural genes encode a group of bHLH proteins that play crucial roles in controlling cell fate in a variety of tissue types. Basic helix-loop-helix proteins are characterized by two
alpha helixes The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand- helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues e ...
separated by a loop. The helixes mediate dimerization, and the adjacent basic region is required for DNA binding. The human genome contains approximately 125 bHLH factors.


Discovery

The proneural genes were first identified in the 1920s , when mutant flies that lacked subsets of external sense organs or bristles were found. Later on, in the 1970s, the achaete-scute complex, a complex of genes that are involved in regulating the early steps of neural development in '' Drosophila'', were identified . Using molecular tools it was possible to isolate the first four genes of this complex: achaete (ac), scute (sc), lethal of scute (lsc) and asense (ase). Another proneural gene, atonal (ato) was isolated more recently and two ato-related genes, amos and cato, were later-isolated, defining a second family of proneural genes – atonal complex. Recently , the first homologue of the fly proneural genes to be found in mammals was mash1.


List of proneural genes

This list refers to bHLH proteins found in invertebrates and vertebrates. They are grouped in distinct families on the basis of closer sequence similarities in the bHLH domain:


Proneural genes functions

Genes of the ASC and Neurogenin families, and possibly members of the family of ato homologues, have a similar proneural function in vertebrates to that of their ''Drosophila'' counterparts, whereas other neural bHLH genes are involved in specifying neuronal fates or in neuronal differentiation, but have no proneural role.


Neural functions

Proneural proteins bind DNA as heterodimeric complexes that are formed by bHLH proteins or E proteins. Because heterodimerization is a prerequisite for DNA binding, factors that interfere with
dimerization A dimer () (''wikt:di-, di-'', "two" + ''-mer'', "parts") is an oligomer consisting of two monomers joined by bonds that can be either strong or weak, Covalent bond, covalent or Intermolecular force, intermolecular. Dimers also have significant im ...
effectively act as passive
repressor In molecular genetics, a repressor is a DNA- or RNA-binding protein that inhibits the expression of one or more genes by binding to the operator or associated silencers. A DNA-binding repressor blocks the attachment of RNA polymerase to the ...
s of proneural gene activity. Proneural proteins specifically bind DNA sequences that contain a core hexanucleotide motif, CANNTG, known as an E-box. The basic region and helix 1 of the bHLH domain form a long
alpha-helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ear ...
that is connected with the loop region to helix 2. Direct contacts between bHLH residues and DNA are responsible for the common ability of neural bHLH proteins to bind to the core E-boxsequence. The cells within a cluster that express a proneural gene (called a proneural cluster) can be thought of as cells of an equivalence group. Within a proneural cluster, the cells compete with each other, such that only a subset of cells is singled out to develop into neuronal precursors. This singling out process is mediated by cell-cell interactions interpreted through the action of neurogenic genes. In neuroectoderm, neurogenic genes are required to single out cells from within proneural clusters to form neuronal precursors, leaving the remaining cells of proneural clusters to develop into epidermal cells. Proneural genes may function in analogous fashions in vertebrates and invertebrates, specifically they were implicated in early
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
. Although proneural proteins are responsible for trigger
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
, different proteins are required for different neural and/or glial cell types. This implies that each of these proteins is capable of regulating both common target genes for
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
and unique target genes for neuronal subtype characteristics. Proneural bHLH transcription factors, not only drive
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
by activating the expression of a cascade of neuronal genes, but they inhibit the expression of
glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
genes. Neural bHLH genes have different functions depending on: the sensitivity to lateral inhibition, which determines if a cell becomes epidermal or neuronal, and whether the gene is expressed in the CNS before or after the terminal
mitosis In cell biology, mitosis () is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei. Cell division by mitosis gives rise to genetically identical cells in which the total number of chromosomes is mainta ...
. Proneural genes promote
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
and inhibit gliogenesis but some neurogenic factors can regulate both of these processes, depending on the proneural genes concentration. For example, BMPs (Bone Morphogenetic Proteins) promote
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
in progenitors that express high levels of Neurogenin-1 and gliogenesis in progenitors that express low levels of Neurogenin-1. Gliogenesis processes depend on low concentrations or delection of proneural genes and can be accelerated depending on which proneural genes are affected.


In invertebrates

In ''Drosophila'', proneural genes are first expressed in quiescent
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
al cells that have both epidermal and neuronal potential. Proneural activity results in the selection of progenitors that are committed to a neural fate but remain multipotent, with sense organ progenitors giving rise to neurons, glia and other non-neuronal cell types. Additionally, some
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s of the central nervous system also generate both neurons and glia. Progenitors of the
peripheral A peripheral or peripheral device is an auxiliary device used to put information into and get information out of a computer. The term ''peripheral device'' refers to all hardware components that are attached to a computer and are controlled by the ...
and central nervous system only begin to divide after proneural gene expression has subsided.


In vertebrates

Proneural genes are first expressed in neuroepithelial cells that are already specified for a neural fate and are self-renewing. Proneural activity results in the generation and delamination of progenitors that are restricted to the neuronal fate and have a limited mitotic potential. In some lineages, at least, proneural genes are involved in the commitment of neural progenitors to the neuronal fate at the expense of a
glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
fate.


In lateral inhibition process

Lateral inhibition is a cell-cell interaction that occurs within a proneural cluster to determine and limit the cells that give rise to
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
. During this interaction, nascent
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s express proneural genes above a determined threshold and, at the same time, they express a membrane bound ligand, called ‘’Delta’’, which binds and activate Notch receptors expressed in neighboring cells. Once Notch is activated, the activity of proneural genes decreases in these cells, probably due to the activation of genes in the ‘’enhancer of split ’’ complex, encoding in inhibitory bHLH transcription factors. When inhibited, proneural genes prevent cells from becoming neural, but also reduce their levels of ‘’Delta’’. These particular interactions restrict the proneural activity to a single cell in each proneural cluster giving rise to a salt-and-pepper pattern. Not all proneural genes are equally sensitive to lateral inhibition. For example, in Xenopus, Chitnis and Kintner demonstrated that ‘’XASH-3’’ and NeuroD ( achaete-scute complex) respond differently to lateral inhibition, which reflect different ability to activate target genes and differential susceptibility of these target genes to repression by notch. Posterior studies revealed that even when Notch/Delta signaling pathway is blocked, Wnt2b is capable of inhibiting neuronal differentiation, through the downregulation of mRNA expression of multiple proneural genes and also of Notch1. With this mechanism Wnt2b maintains progenitor cells undifferentiated by attenuating the expression of proneural and neurogenic genes, preventing cells from getting into the differentiation cascade regulated by proneural genes and Notch. Although notch signaling is involved in the control of proneural gene expression, positive-feedback loops are required to increase or maintain the levels of proneural genes. The transcription factors responsible for this maintenance can act through the inhibition of the
notch signaling pathway The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTCH4. The ...
in particular cells or at a post-transcriptional level, affecting proneural genes transcription and function.


In neurogenesis


=Neurogenesis in the invertebrate nervous system

= In invertebrates, the proneural genes, particularly the members of the achaete-scute complex (AS-C) promote
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
, while the neurogenic genes prevent
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
and facilitate epidermal development. The formation of
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s depends on the Achaete-scute complex genes – achaete (ac), scute (sc), lethal of scute (lsc) and ventral nervous system defective (‘’vnd’’). However, only ‘’vnd’’ can control this formation process because this gene activates the expression of the others. ac, sc, lsc factors are initially expressed within the primordium of the embryonic central nervous system ( neuroectoderm) in proneural clusters, from which single
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s later arise. Every cell of the proneural cluster shares a common neuroblasts-forming potential. The local inhibition of the remaining cells by the enlarging
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s ensures that only one
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
arises from the proneural cluster. All cells of the cluster retain their NB forming potential, at least while the NB is enlarging, but lose this potential by the time the cell is about to divide. The patterns of expression of the proneural genes lead to different modes of
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s formation in the head and trunk. Co-expression of proneural genes in brain
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s is transient and varies with the developmental stage.


=Neurogenesis of the stomatogastric nervous system in ''Drosophila''

= Proneural gene expression in the neuroectodermal cells that constitutes the proneural clusters turns them competent to delaminate as neuroblasts. Although
neuroblast In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
s are the precursors of ''Drosophila’s'' central nervous system (CNS), the proneural gene expression are also involved in control specification and morphogenesis of stomatogastric nerve cell precursors. These genes are expressed and required during all phases of the
stomatogastric nervous system {{no footnotes, date=November 2014 The Stomatogastric Nervous System (STNS) is a commonly studied neural network composed of several ganglia in arthropods that controls the motion of the gut and foregut. The network of neurons acts as a centr ...
(SNS) development to regulate the number, pattern and structural characteristics of the SNS subpopulations. The proper balance between proneural and neurogenic gene expression in the SNS placodes is involved in the control of a complex sequence of morphogenetic movements (delamination, invagination and dissociation) by which these placodes give rise to the different SNS subpopulations.


=Neurogenesis in the vertebrate central nervous system

= In central nervous system not all bHLH genes are involved in
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
because NeuroD and ‘’Math3/NeuroM’’ families are also involved in the neuronal-versus-glial cell fate decision. Another pro-neural family (which includes ‘’math1’’ and ‘’math5’’) is essential to the development of a small number of neural lineages whereas ‘’math1’’ have also a role in the specification
interneuron Interneurons (also called internuncial neurons, relay neurons, association neurons, connector neurons, intermediate neurons or local circuit neurons) are neurons that connect two brain regions, i.e. not direct motor neurons or sensory neurons. I ...
identity. Cell types that depend on ‘’math1’’ expression belong to the proprioceptive sensory pathway. Bertrand et al. (2002) have confirmed the proneural activity of ‘’mash1’’, ngn1 and
ngn2 Neurogenins are a family of bHLH transcription factors involved in specifying neuronal differentiation. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also exp ...
, and possibly math1 and ‘’math5’’ in the mouse.
Neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
in the central nervous system depends on proneural gene inhibition by
Notch signaling pathway The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTCH4. The ...
and the absence of this key regulator results in the premature differentiation of neurons. To maintain neural progenitor cells a regulatory loop takes place between neighboring cells, that involves the lateral inhibition process (see lateral inhibition). In the absence of Lateral inhibition some proneural genes such as ASCL1 or "" are capable of inducing the expression of neuron-specific genes leading to the premature formation of early born-neurons. Ratié and colleagues (2013) comprised that Notch proneural gene network have an important role in cell fate renewal and transition in the mouse.


=Neurogenesis in the vertebrate peripheral nervous system

= In the peripheral nervous system, Ngns are involved in the determination of all cranial and spinal sensory progenitors. Proneural genes such as mash1, ngn1 and
ngn2 Neurogenins are a family of bHLH transcription factors involved in specifying neuronal differentiation. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also exp ...
are mainly expressed in most progenitors of spinal cord, and are also co-express in the dorsal telencephalon. Together these groups of bHLH factors promote the generation of all cerebral cortex progenitors. Mash1 is the only gene expressed in the ventral telencephalon. However, in the ventral and dorsal ends of the neural tube a different type of proneural genes is expressed, such as ngn3 and ‘’math1’’.


In gliogenesis

Neural stem cells could give rise to neuronal or glial progenitors, depending on the type of signals that they receive - gliogenic or neurogenic signals, respectively.
Glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
progenitor cells could differentiate into oligodendrocytes or astrocytes. However, lineage commitment of neural progenitors involves the suppression of alternative fates. Therefore, vertebrate proneural genes promote neuronal fates and simultaneously inhibit
glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
fates. For example, the downregulation of the expression of proneural gene
ngn2 Neurogenins are a family of bHLH transcription factors involved in specifying neuronal differentiation. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also exp ...
in the spinal cord represses oligodendrocyte differentiation. In the context of restricted
glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
progenitors, proneural genes might have functions that are distinct from their better-characterized role in lineage specification, perhaps in the differentiation of glial lineages. Sun and colleagues showed that proneural ngn1 inhibits gliogenesis by binding transcriptional co-activators like CBP/ Smad1 or p300/ Smad1 preventing the transcription of
glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form mye ...
differentiation genes. On the other hand, the
Notch signaling pathway The Notch signaling pathway is a highly Conserved sequence, conserved cell signaling system present in most animals. Mammals possess four different Notch proteins, notch receptors, referred to as NOTCH1, NOTCH2, Notch 3, NOTCH3, and NOTCH4. The ...
is capable of promoting gliogenesis in
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type o ...
s through the inhibition of proneural genes, such as mash1 and neurogenins.


In cell-cycle regulation fate

In vertebrates, although proneural genes determine the neural fate of progenitors, they also promote the arrest of their division stage by the isolation of already specified progenitor cells from the influence of extrinsic fate-determining cues. Proneural genes regulate cell cycle by the activation of
cyclin-dependent kinase Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells. They a ...
(‘’Cdk’’) inhibitors in some lineages at the level of neuronal-differentiation genes. On the other hand, in invertebrates like ''Drosophila'', proneural genes are expressed mainly in non-dividing cells, but could also be expressed in dividing-cells, where Achaete-scute complex proneural genes have been shown to inhibit cell-cycle progression.


In the development of sensory organs

The proneural genes also have an important role in the development of distinct types of sensory organs, namely chordotonal organs ( proprioceptorsthat detect mechanical and sound vibrations) and external sensory organs. Members of achaete-scute complex, such as achaete and scute, as well as ‘’atonal’’ and ‘’daughterless’’ confer to ectodermal cells the ability to become sensory mother cells (SMCs). In the development of
sensory Sensory may refer to: Biology * Sensory ecology, how organisms obtain information about their environment * Sensory neuron, nerve cell responsible for transmitting information about external stimuli * Sensory perception, the process of acquiri ...
organs there are two main phases: determination and differentiation that may not be mechanistically separable. Proneural proteins are involved in both processes, through the activation of the downstream “differentiating genes” that in turn regulate the induction of sensory-organ-subtype characteristics. The specification of sensory organs by proneural genes is a complex process, since they elicit different cellular contexts. For instance, in ''Drosophila'', atonal (ato) can promote the development of chordotonal organs, for the receptors of olfactory sense organs, depending on the imaginal disc in which it is expressed. In ''Drosophila’s''
embryogenesis An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sperm ...
, the proneural gene achaete is expressed in well-determined regions as in the
endoderm Endoderm is the innermost of the three primary germ layers in the very early embryo. The other two layers are the ectoderm (outside layer) and mesoderm (middle layer). Cells migrating inward along the archenteron form the inner layer of the gast ...
, being responsible for the formation of particular sensory organs in the adult and larvae. According to Ruíz-Gomes and Ghysen (1993), this expression occurs in two distinct phases: a competent state, in which the proneural gene is expressed in a cell cluster; a determined state, in which a specific cell accumulate high levels of ‘’ac’’ transcripts, originating a neural precursor. The function of each of the ASC complex genes varies with the development state (larvae or adult). For example, in the adult state the ac and sc genes promote the differentiation of two sets of complementary sensory organs and ase gene as a minimal function, while in the larvae state ac and sc genes affect the same set of sensory organs and ase is responsible for the determination of a complementary set.


In corticogenesis

In the
neocortex The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, sp ...
exists a wide neuronal network, supported by astrocytes and oligodendrocytes ( glial cells) with different functions. During cortical development, bHLH factors control proliferation and differentiation of neural cells and their functions at any given time and place depends on their cellular context. NeuroD, Ngns, Mash, ‘’Olig’’ and other proneural gene families have a crucial role in cell fate decision during corticogenesis and different combinations of them regulate the choice and the timing of differentiation into a neuron, an astrocyte or an oligodendrocyte. High levels of Ngn1 and
Ngn2 Neurogenins are a family of bHLH transcription factors involved in specifying neuronal differentiation. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also exp ...
are required to specify neuronal identity of cortical progenitors only in early stages of
neocortex The neocortex, also called the neopallium, isocortex, or the six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, sp ...
development. Particularly,
ngn2 Neurogenins are a family of bHLH transcription factors involved in specifying neuronal differentiation. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also exp ...
is also important to regulate the transition of cortical progenitors from the ventricular zone to the subventricular zone. On the other hand, mash1 is implicated in the early differentiation of
striatum The striatum, or corpus striatum (also called the striate nucleus), is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamate ...
neurons and sufficient to promote basal cell divisions independently of its role in the specification of neuronal cell fates at later stages. Cooperation between
ngn2 Neurogenins are a family of bHLH transcription factors involved in specifying neuronal differentiation. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also exp ...
and mash1 proneural genes regulate the transition of cortical progenitors from apical to basal cell compartments. The specification of different neuronal subtypes depends on the group of proneural genes involved. Low levels of proneural transcripts in ventricular zone are expressed when progenitor’s specification occurs and an increase in their expression results in the beginning of
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
. Ngns are responsible for the formation of glutamatergic neurons whereas mash1 gives rise to
GABAergic In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter GABA. For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A ...
and cholinergic neurons.


In ''Drosophila'' photoreceptor development

The proneural protein Atonal (Ato) is responsible for the development of ''Drosophila’s'' R8 photoreceptors. However, it does not act alone, since it dimerizes with a second identical protein, ‘’Daughterless (Da)’’ that reinforces its expression. The coexpression of ‘’Ato’’ and ‘’Da’’ is important for the migration of the different cell types of an ommatidium and for the repression of atonal in the inter-cluster spaces, functioning as inhibitory signals that regulate both the number and position of the nascent R8 cells. Moreover, this expression leads to the activation of the
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
MAPK that is important for the cellular recruitment and the repressor effect, once, when this
kinase In biochemistry, a kinase () is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule don ...
is inactive the expression of ‘’Ato’’ is detected in every cell. In an initial state, Hedgehog (‘’Hh’’) and Decapentaplegic are responsible for the activation of ‘’ato’’ in small cellular clusters, leading to the activation of MAPK. First, Hedgehog induces ‘’ato’’ expression in more than just the cells that ultimately become
photoreceptor cell A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light (visible electromagnetic radiatio ...
s, so its expression has to be refined and restricted to a single presumptive R8 cell.
Hedgehog signaling The Hedgehog signaling pathway is a signaling pathway that transmits information to embryonic cells required for proper cell differentiation. Different parts of the embryo have different concentrations of hedgehog signaling proteins. The pathway ...
is also required to repress ‘’atonal’’ expression between the nascent proneural clusters, which reveals a dual role crucial to building precision and geometry into the adult retina. Therefore, the regulation of ‘’ato’’ expression depends on the levels of Hedgehog: at low levels (that is far from the source) this pronuclear gene is activated and at high levels (close to the source) it is repressed. Combining lateral inhibition with the dual role played by Hedgehog, one can imagine how the hexagonal array of R8 cells can be patterned.


Non-neural functions

Besides their role in the nervous system development, proneural genes are also involved in processes related to trophoblast invasion,
endocrine The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is the neu ...
cell differentiation (namely in pancreas and adenohypophysis), sex determination and lungs, thyroid, adrenal and salivary glands and gastrointestinal system development.


In human trophoblast invasion

Additionally to their involvement in neuronal and glial differentiation, sex determination and sensory organs development, proneural genes are also involved in trophoblast differentiation during progression of invasion, in placental formation. Studies revealed the expression of neuroD1, neuroD2 and ‘’ath2’’ transcripts in different subsets of invasive trophoblast.


In pancreas development

In the developing pancreas, transcription factor ngn3’marks the populations of cells that are in transit from undifferentiated epithelial progenitor cells to mature
endocrine The endocrine system is a messenger system comprising feedback loops of the hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In vertebrates, the hypothalamus is the neu ...
cells (precursors of pancreatic endocrine cells), and thus that do not express hormones yet, which suggests that this gene is turned off in differentiated hormone-positive. ngn3’’ is both necessary and sufficient to drive the formation of islet cells during pancreatic development, in a manner similar to the specification of neural fate in neuroectoderm.


In sex determination

Although
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
and sex determination appear to be different biological processes, there is evidence that ‘’daughterless (da’’) - an essential gene for the formation of the entire ''Drosophila'' peripheral nervous system - is also required for proper sex determination. In flies, scute works to direct neuronal development, but this gene also acquired a role in the primary event of sex determinationX chromosome counting – by becoming an X chromosome signal element.


In myogenesis

Although proneural genes operate in the
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
, lethal of scute acts in the
somatic mesoderm The lateral plate mesoderm is the mesoderm that is found at the periphery of the embryo. It is to the side of the paraxial mesoderm, and further to the axial mesoderm. The lateral plate mesoderm is separated from the paraxial mesoderm by a narrow ...
to define cell cluster from which
muscle Skeletal muscles (commonly referred to as muscles) are organs of the vertebrate muscular system and typically are attached by tendons to bones of a skeleton. The muscle cells of skeletal muscles are much longer than in the other types of muscl ...
progenitors will be single out. The interaction between these cells and
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
, leads to the formation of muscle founder cells, in an analogous process to the one that occurs in the central nervous system.


In cell migration

ngn1 and
ngn2 Neurogenins are a family of bHLH transcription factors involved in specifying neuronal differentiation. It is one of many gene families related to the ''atonal'' gene in Drosophila. Other positive regulators of neuronal differentiation also exp ...
can regulate independently the mechanisms of the cell migration and are involved in the initial downregulation of RhoA right before neural progenitor cells become postmitotic, whereas neuroD is primarily involved in the continuous suppression of RhoA during the cortical migration. Other bHLH factors like ‘’math2’’, neuroD2 and ‘’nscl1’’ can suppress RhoA expression and regulate the migration machinery in postmitotic neurons.


References

{{reflist, 2 Developmental genes and proteins