Physical World
   HOME

TheInfoList



OR:

The universe is all of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
and
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
and their contents, including
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s,
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, galaxies, and all other forms of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
. The
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
theory is the prevailing
cosmological Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...
description of the development of the universe. According to this theory, space and time emerged together ago, and the universe has been expanding ever since the Big Bang. While the spatial size of the entire universe is unknown, it is possible to measure the size of the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
, which is approximately 93 billion
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
s in diameter at the present day. Some of the earliest cosmological models of the universe were developed by
ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic peri ...
and
Indian philosophers Indian philosophy refers to philosophical traditions of the Indian subcontinent. A traditional Hindu classification divides āstika and nāstika schools of philosophy, depending on one of three alternate criteria: whether it believes the Veda ...
and were
geocentric In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, an ...
, placing
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
at the center. Over the centuries, more precise astronomical observations led
Nicolaus Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic Church, Catholic cano ...
to develop the
heliocentric model Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at ...
with the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
at the center of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. In developing the law of universal gravitation,
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
built upon Copernicus's work as well as
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
's laws of planetary motion and observations by
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was k ...
. Further observational improvements led to the realization that the Sun is one of a few hundred billion stars in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
, which is one of a few hundred billion galaxies in the universe. Many of the stars in a galaxy have planets. At the largest scale, galaxies are distributed uniformly and the same in all directions, meaning that the universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and
supercluster A supercluster is a large group of smaller galaxy clusters or galaxy groups; they are among the largest known structures in the universe. The Milky Way is part of the Local Group galaxy group (which contains more than 54 galaxies), which in turn ...
s which form immense filaments and
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
in space, creating a vast foam-like structure. Discoveries in the early 20th century have suggested that the universe had a beginning and that space has been expanding since then at an increasing rate. According to the Big Bang theory, the energy and matter initially present have become less dense as the universe expanded. After an initial accelerated expansion called the
inflationary epoch __NOTOC__ In physical cosmology, the inflationary epoch was the period in the evolution of the early universe when, according to inflation theory, the universe underwent an extremely rapid exponential expansion. This rapid expansion increased the ...
at around 10−32 seconds, and the separation of the four known
fundamental forces In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electro ...
, the universe gradually cooled and continued to expand, allowing the first
subatomic particle In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a pr ...
s and simple
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s to form.
Dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
gradually gathered, forming a
foam Foams are materials formed by trapping pockets of gas in a liquid or solid. A bath sponge and the head on a glass of beer are examples of foams. In most foams, the volume of gas is large, with thin films of liquid or solid separating the reg ...
-like structure of filaments and
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
under the influence of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. Giant clouds of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
and
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
were gradually drawn to the places where dark matter was most
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
, forming the first galaxies, stars, and everything else seen today. From studying the movement of galaxies, it has been discovered that the universe contains much more
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
than is accounted for by visible objects; stars, galaxies, nebulas and interstellar gas. This unseen matter is known as dark matter (''dark'' means that there is a wide range of strong indirect evidence that it exists, but we have not yet detected it directly). The
ΛCDM The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda ( Greek Λ) associated w ...
model is the most widely accepted model of the universe. It suggests that about 015of the mass and energy in the universe is a
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
(or, in extensions to ΛCDM, other forms of
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
, such as a
scalar field In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
) which is responsible for the current
expansion of space The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
, and about 015is dark matter. Ordinary ('
baryonic In particle physics, a baryon is a type of composite particle, composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron list of particles, family of particles; hadrons are composed o ...
') matter is therefore only 015of the physical universe. Stars, planets, and visible gas clouds only form about 6% of the ordinary matter. There are many competing hypotheses about the
ultimate fate of the universe The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational e ...
and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible. Some physicists have suggested various
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The di ...
hypotheses, in which our universe might be one among many universes that likewise exist.


Definition

The physical universe is defined as all of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
and
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
(collectively referred to as
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
) and their contents. Such contents comprise all of energy in its various forms, including
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
and
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
, and therefore planets,
moons A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body (or sometimes another natural satellite). Natural satellites are often colloquially referred to as ''moons'' ...
, stars, galaxies, and the contents of
intergalactic space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, predo ...
. The universe also includes the
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) a ...
s that influence energy and matter, such as
conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of energy, conservation of linear momentum, c ...
s,
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, and relativity. The universe is often defined as "the totality of existence", or
everything Everything, every-thing, or every thing is all that exists; the opposite of nothing, or its complement. It is the totality of things relevant to some subject matter. Without expressed or implied limits, it may refer to anything. The univers ...
that exists, everything that has existed, and everything that will exist. In fact, some philosophers and scientists support the inclusion of ideas and abstract concepts—such as mathematics and logic—in the definition of the universe. The word ''universe'' may also refer to concepts such as ''the cosmos'', ''the world'', and ''nature''.


Etymology

The word ''universe'' derives from the
Old French Old French (, , ; Modern French: ) was the language spoken in most of the northern half of France from approximately the 8th to the 14th centuries. Rather than a unified language, Old French was a linkage of Romance dialects, mutually intelligib ...
word , which in turn derives from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
word . The Latin word was used by
Cicero Marcus Tullius Cicero ( ; ; 3 January 106 BC – 7 December 43 BC) was a Roman statesman, lawyer, scholar, philosopher, and academic skeptic, who tried to uphold optimate principles during the political crises that led to the estab ...
and later Latin authors in many of the same senses as the modern
English English usually refers to: * English language * English people English may also refer to: Peoples, culture, and language * ''English'', an adjective for something of, from, or related to England ** English national ide ...
word is used.Lewis, C.T. and Short, S (1879) ''A Latin Dictionary'', Oxford University Press, , pp. 1933, 1977–1978.


Synonyms

A term for ''universe'' among the ancient Greek philosophers from
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samos, Samian, or simply ; in Ionian Greek; ) was an ancient Ionians, Ionian Ancient Greek philosophy, Greek philosopher and the eponymou ...
onwards was () 'the all', defined as all matter and all space, and () 'all things', which did not necessarily include the void. Another synonym was () meaning 'the
world In its most general sense, the term "world" refers to the totality of entities, to the whole of reality or to everything that is. The nature of the world has been conceptualized differently in different fields. Some conceptions see the worl ...
, the
cosmos The cosmos (, ) is another name for the Universe. Using the word ''cosmos'' implies viewing the universe as a complex and orderly system or entity. The cosmos, and understandings of the reasons for its existence and significance, are studied in ...
'. Synonyms are also found in Latin authors (, , ) and survive in modern languages, e.g., the
German German(s) may refer to: * Germany (of or related to) ** Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ge ...
words , , and for ''universe''. The same synonyms are found in English, such as everything (as in the
theory of everything A theory of everything (TOE or TOE/ToE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all asp ...
), the cosmos (as in
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount (lexicographer), Thomas Blount's ''Glossographia'', and in 1731 taken up in ...
), the world (as in the
many-worlds interpretation The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum me ...
), and
nature Nature, in the broadest sense, is the physics, physical world or universe. "Nature" can refer to the phenomenon, phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. ...
(as in
natural law Natural law ( la, ius naturale, ''lex naturalis'') is a system of law based on a close observation of human nature, and based on values intrinsic to human nature that can be deduced and applied independently of positive law (the express enacte ...
s or
natural philosophy Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior throu ...
).


Chronology and the Big Bang

The prevailing model for the evolution of the universe is the Big Bang theory. The Big Bang model states that the earliest state of the universe was an extremely hot and dense one, and that the universe subsequently expanded and cooled. The model is based on
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
and on simplifying assumptions such as the
homogeneity Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the Uniformity (chemistry), uniformity of a Chemical substance, substance or organism. A material or image that is homogeneous is uniform in compos ...
and
isotropy Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
of space. A version of the model with a
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
(Lambda) and cold dark matter, known as the
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with d ...
, is the simplest model that provides a reasonably good account of various observations about the universe. The Big Bang model accounts for observations such as the correlation of distance and
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
of galaxies, the ratio of the number of hydrogen to helium atoms, and the microwave radiation background. The initial hot, dense state is called the
Planck epoch The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, wit ...
, a brief period extending from time zero to one Planck time unit of approximately 10−43 seconds. During the Planck epoch, all types of matter and all types of energy were concentrated into a dense state, and
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
—currently the weakest by far of the four known forces—is believed to have been as strong as the other fundamental forces, and all the forces may have been unified. Since the Planck epoch, space has been expanding to its present scale, with a very short but intense period of cosmic inflation believed to have occurred within the first 10−32 seconds. This was a kind of expansion different from those we can see around us today. Objects in space did not physically move; instead the
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
that defines space itself changed. Although objects in
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
cannot move faster than the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
, this limitation does not apply to the metric governing spacetime itself. This initial period of inflation is believed to explain why space appears to be very flat, and much larger than light could travel since the start of the universe. Within the first fraction of a second of the universe's existence, the four fundamental forces had separated. As the universe continued to cool down from its inconceivably hot state, various types of
subatomic particles In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a pro ...
were able to form in short periods of time known as the
quark epoch In physical cosmology, the Quark epoch was the period in the evolution of the early universe when the fundamental interactions of gravitation, electromagnetism, the strong interaction and the weak interaction had taken their present forms, but th ...
, the
hadron epoch In physical cosmology, the hadron epoch started 20 microseconds after the Big Bang. The temperature of the universe had fallen sufficiently to allow the quarks from the preceding quark epoch to bind together into hadrons. Initially, the temperatur ...
, and the
lepton epoch In physical cosmology, the lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the Universe. It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons a ...
. Together, these epochs encompassed less than 10 seconds of time following the Big Bang. These
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s associated stably into ever larger combinations, including stable
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s, which then formed more complex
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
through
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
. This process, known as
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen ( hydrogen-1, 1H, having a single proton as a nucleu ...
, only lasted for about 17 minutes and ended about 20 minutes after the Big Bang, so only the fastest and simplest reactions occurred. About 25% of the
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and all the
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s in the universe, by mass, were converted to
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, with small amounts of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
(a
form Form is the shape, visual appearance, or configuration of an object. In a wider sense, the form is the way something happens. Form also refers to: *Form (document), a document (printed or electronic) with spaces in which to write or enter data ...
of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
) and traces of
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
. Any other element was only formed in very tiny quantities. The other 75% of the protons remained unaffected, as
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, an ...
nuclei. After nucleosynthesis ended, the universe entered a period known as the
photon epoch In physical cosmology, the photon epoch was the period in the evolution of the early universe in which photons dominated the energy of the universe. The photon epoch started after most leptons and anti-leptons were annihilated at the end of the ...
. During this period, the universe was still far too hot for matter to form neutral
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s, so it contained a hot, dense, foggy
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
of negatively charged
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s, neutral
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s and positive nuclei. After about 377,000 years, the universe had cooled enough that electrons and nuclei could form the first stable
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s. This is known as recombination for historical reasons; in fact electrons and nuclei were combining for the first time. Unlike plasma, neutral atoms are
transparent Transparency, transparence or transparent most often refer to: * Transparency (optics), the physical property of allowing the transmission of light through a material They may also refer to: Literal uses * Transparency (photography), a still, ...
to many
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s of light, so for the first time the universe also became transparent. The photons released ("
decoupled '' Decoupled'' is an Indian English-language comedy web series for Netflix written by Manu Joseph and directed by Hardik Mehta. The series stars R. Madhavan and Surveen Chawla in the lead roles. Plot A misanthropic writer and his startup-foun ...
") when these atoms formed can still be seen today; they form the
cosmic microwave background In Big Bang cosmology the cosmic microwave background (CMB, CMBR) is electromagnetic radiation that is a remnant from an early stage of the universe, also known as "relic radiation". The CMB is faint cosmic background radiation filling all spac ...
(CMB). As the universe expands, the
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extract ...
of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
decreases more quickly than does that of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
because the energy of a photon decreases with its wavelength. At around 47,000 years, the
energy density In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the ''useful'' or extract ...
of matter became larger than that of photons and
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s, and began to dominate the large scale behavior of the universe. This marked the end of the
radiation-dominated era The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations. In the early s ...
and the start of the
matter-dominated era The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations. In the early st ...
. In the earliest stages of the universe, tiny fluctuations within the universe's density led to
concentrations In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', a ...
of
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
gradually forming. Ordinary matter, attracted to these by
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
, formed large gas clouds and eventually, stars and galaxies, where the dark matter was most dense, and
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
where it was least dense. After around 100 – 300 million years, the first
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s formed, known as
Population III During 1944, Walter Baade categorized groups of stars within the Milky Way into stellar populations. In the abstract of the article by Baade, he recognizes that Jan Oort originally conceived this type of classification in 1926: Baade noticed th ...
stars. These were probably very massive, luminous, non metallic and short-lived. They were responsible for the gradual
reionization In the fields of Big Bang theory and cosmology, reionization is the process that caused matter in the universe to reionize after the lapse of the " dark ages". Reionization is the second of two major phase transitions of gas in the universe (t ...
of the universe between about 200-500 million years and 1 billion years, and also for seeding the universe with elements heavier than helium, through stellar nucleosynthesis. The universe also contains a mysterious energy—possibly a
scalar field In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
—called
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
, the density of which does not change over time. After about 9.8 billion years, the universe had expanded sufficiently so that the density of matter was less than the density of dark energy, marking the beginning of the present
dark-energy-dominated era The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations. In the early s ...
. In this era, the expansion of the universe is
accelerating In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by th ...
due to dark energy.


Physical properties

Of the four
fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electrom ...
s,
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
is the dominant at astronomical length scales. Gravity's effects are cumulative; by contrast, the effects of positive and negative charges tend to cancel one another, making electromagnetism relatively insignificant on astronomical length scales. The remaining two interactions, the weak and
strong nuclear force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
s, decline very rapidly with distance; their effects are confined mainly to sub-atomic length scales. The universe appears to have much more
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
than
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
, an asymmetry possibly related to the
CP violation In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry ( parity symmetry). CP-symmetry states that the laws of physics should be the ...
. This imbalance between matter and antimatter is partially responsible for the existence of all matter existing today, since matter and antimatter, if equally produced at the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, would have completely annihilated each other and left only
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s as a result of their interaction. The universe also appears to have neither net
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
nor
angular momentum In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed syst ...
, which follows accepted physical laws if the universe is finite. These laws are
Gauss's law In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
and the non-divergence of the stress-energy-momentum pseudotensor.


Size and regions

According to the general theory of relativity, far regions of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
may never interact with ours even in the lifetime of the universe due to the finite
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
and the ongoing
expansion of space The expansion of the universe is the increase in distance between any two given gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion whereby the scale of space itself changes. The universe does not exp ...
. For example, radio messages sent from
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
may never reach some regions of space, even if the universe were to exist forever: space may expand faster than light can traverse it. The spatial region that can be observed with telescopes is called the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
, which depends on the location of the observer. The proper distance—the distance as would be measured at a specific time, including the present—between Earth and the edge of the observable universe is 46 billion light-years (14 billion parsecs), making the diameter of the observable universe about 93 billion light-years (28 billion parsecs). The distance the light from the edge of the observable universe has travelled is very close to the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
times the speed of light, , but this does not represent the distance at any given time because the edge of the observable universe and the Earth have since moved further apart. For comparison, the diameter of a typical
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
is 30,000 light-years (9,198
parsecs The parsec (symbol: pc) is a unit of length used to measure the large distances to astronomical objects outside the Solar System, approximately equal to or (au), i.e. . The parsec unit is obtained by the use of parallax and trigonometry, an ...
), and the typical distance between two neighboring galaxies is 3 million
light-years A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
(919.8 kiloparsecs). Rindler, p. 196. As an example, the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
is roughly 100,000–180,000 light-years in diameter, and the nearest sister galaxy to the Milky Way, the
Andromeda Galaxy The Andromeda Galaxy (IPA: ), also known as Messier 31, M31, or NGC 224 and originally the Andromeda Nebula, is a barred spiral galaxy with the diameter of about approximately from Earth and the nearest large galaxy to the Milky Way. The gala ...
, is located roughly 2.5 million light-years away. Because we cannot observe space beyond the edge of the observable universe, it is unknown whether the size of the universe in its totality is finite or infinite. Estimates suggest that the whole universe, if finite, must be more than 250 times larger than a
Hubble sphere In cosmology, a Hubble volume (named for the astronomer Edwin Hubble) or Hubble sphere, subluminal sphere, causal sphere and sphere of causality is a spherical region of the observable universe surrounding an observer beyond which objects recede ...
. Some disputed estimates for the total size of the universe, if finite, reach as high as 10^ megaparsecs, as implied by a suggested resolution of the No-Boundary Proposal.


Age and expansion

Assuming that the
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with d ...
is correct, the measurements of the parameters using a variety of techniques by numerous experiments yield a best value of the age of the universe at 13.799 ± 0.021 billion years, as of 2015. Over time, the universe and its contents have evolved; for example, the relative population of
quasar A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a m ...
s and galaxies has changed and
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
itself has expanded. Due to this expansion, scientists on Earth can observe the light from a galaxy 30 billion light-years away even though that light has traveled for only 13 billion years; the very space between them has expanded. This expansion is consistent with the observation that the light from distant galaxies has been
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
ed; the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s emitted have been stretched to longer
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s and lower
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
during their journey. Analyses of
Type Ia supernova A Type Ia supernova (read: "type one-A") is a type of supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white ...
e indicate that the spatial expansion is
accelerating In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by th ...
. The more matter there is in the universe, the stronger the mutual
gravitational In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
pull of the matter. If the universe were ''too'' dense then it would re-collapse into a
gravitational singularity A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is so intense that spacetime itself breaks down catastrophically. As such, a singularity is by definition no longer part of the regular sp ...
. However, if the universe contained too ''little'' matter then the self-gravity would be too weak for astronomical structures, like galaxies or planets, to form. Since the Big Bang, the universe has expanded
monotonic In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
ally. Perhaps unsurprisingly, our universe has just the right mass-energy density, equivalent to about 5 protons per cubic metre, which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today. There are dynamical forces acting on the particles in the universe which affect the expansion rate. Before 1998, it was expected that the expansion rate would be decreasing as time went on due to the influence of gravitational interactions in the universe; and thus there is an additional observable quantity in the universe called the
deceleration parameter The deceleration parameter ''q'' in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: :q \ \stackrel\ -\frac where a is the s ...
, which most cosmologists expected to be positive and related to the matter density of the universe. In 1998, the deceleration parameter was measured by two different groups to be negative, approximately -0.55, which technically implies that the second derivative of the cosmic
scale factor In affine geometry, uniform scaling (or isotropic scaling) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a '' scale factor'' that is the same in all directions. The result of uniform scaling is similar ...
\ddot has been positive in the last 5-6 billion years. This acceleration does not, however, imply that the Hubble parameter is currently increasing; see
deceleration parameter The deceleration parameter ''q'' in cosmology is a dimensionless measure of the cosmic acceleration of the expansion of space in a Friedmann–Lemaître–Robertson–Walker universe. It is defined by: :q \ \stackrel\ -\frac where a is the s ...
for details.


Spacetime

Spacetimes are the arenas in which all physical events take place. The basic elements of spacetimes are
events Event may refer to: Gatherings of people * Ceremony, an event of ritual significance, performed on a special occasion * Convention (meeting), a gathering of individuals engaged in some common interest * Event management, the organization of ev ...
. In any given spacetime, an event is defined as a unique position at a unique time. A spacetime is the union of all events (in the same way that a line is the union of all of its points), formally organized into a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
. Events, such as matter and energy, bend spacetime. Curved spacetime, on the other hand, forces matter and energy to behave in a certain way. There is no point in considering one without the other. The universe appears to be a smooth spacetime continuum consisting of three spatial
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
s and one temporal (
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
) dimension (an event in the spacetime of the physical universe can therefore be identified by a set of four coordinates: (''x'', ''y'', ''z'', ''t''). On average,
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
is observed to be very nearly
flat Flat or flats may refer to: Architecture * Flat (housing), an apartment in the United Kingdom, Ireland, Australia and other Commonwealth countries Arts and entertainment * Flat (music), a symbol () which denotes a lower pitch * Flat (soldier), ...
(with a
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
close to zero), meaning that
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small ...
is empirically true with high accuracy throughout most of the Universe.WMAP Mission: Results – Age of the Universe
. Map.gsfc.nasa.gov. Retrieved November 28, 2011.
Spacetime also appears to have a simply connected
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
, in analogy with a sphere, at least on the length-scale of the observable universe. However, present observations cannot exclude the possibilities that the universe has more dimensions (which is postulated by theories such as the
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interac ...
) and that its spacetime may have a multiply connected global topology, in analogy with the cylindrical or
toroid In mathematics, a toroid is a surface of revolution with a hole in the middle. The axis of revolution passes through the hole and so does not intersect the surface. For example, when a rectangle is rotated around an axis parallel to one of its ...
al topologies of two-dimensional
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
s. The spacetime of the universe is usually interpreted from a Euclidean perspective, with space as consisting of
three dimensions Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
, and time as consisting of
one dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordin ...
, the " fourth dimension". By combining space and time into a single
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
called
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inerti ...
, physicists have simplified a large number of physical theories, as well as described in a more uniform way the workings of the universe at both the supergalactic and
subatomic In physical sciences, a subatomic particle is a particle that composes an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a prot ...
levels. Spacetime
events Event may refer to: Gatherings of people * Ceremony, an event of ritual significance, performed on a special occasion * Convention (meeting), a gathering of individuals engaged in some common interest * Event management, the organization of ev ...
are not absolutely defined spatially and temporally but rather are known to be relative to the motion of an
observer An observer is one who engages in observation or in watching an experiment. Observer may also refer to: Computer science and information theory * In information theory, any system which receives information from an object * State observer in co ...
. Minkowski space approximates the universe without
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
; the
pseudo-Riemannian manifold In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
s of
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
describe spacetime with matter and gravity.


Shape

General relativity describes how spacetime is curved and bent by mass and energy (gravity). The
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
or
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
of the universe includes both local geometry in the
observable universe The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
and global geometry. Cosmologists often work with a given
space-like In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why diffe ...
slice of spacetime called the comoving coordinates. The section of spacetime which can be observed is the backward
light cone In special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single event (localized to a single point in space and a single moment in time) and traveling in all directions, would take thro ...
, which delimits the
cosmological horizon A cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Co ...
. The cosmological horizon (also called the particle horizon or the light horizon) is the maximum distance from which
particles In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
can have traveled to the
observer An observer is one who engages in observation or in watching an experiment. Observer may also refer to: Computer science and information theory * In information theory, any system which receives information from an object * State observer in co ...
in the
age of the universe In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, ...
. This horizon represents the boundary between the observable and the unobservable regions of the universe. The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model. An important parameter determining the future evolution of the universe theory is the
density parameter The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedma ...
, Omega (Ω), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible
geometries This is a list of geometry topics. Types, methodologies, and terminologies of geometry. * Absolute geometry * Affine geometry * Algebraic geometry * Analytic geometry * Archimedes' use of infinitesimals * Birational geometry * Complex geomet ...
depending on whether Ω is equal to, less than, or greater than 1. These are called, respectively, the flat, open and closed universes. Observations, including the
Cosmic Background Explorer The Cosmic Background Explorer (COBE ), also referred to as Explorer 66, was a NASA satellite dedicated to cosmology, which operated from 1989 to 1993. Its goals were to investigate the cosmic microwave background radiation (CMB or CMBR) of t ...
(COBE), Wilkinson Microwave Anisotropy Probe (WMAP), and
Planck Max Karl Ernst Ludwig Planck (, ; 23 April 1858 – 4 October 1947) was a German theoretical physicist whose discovery of energy quanta won him the Nobel Prize in Physics in 1918. Planck made many substantial contributions to theoretical p ...
maps of the CMB, suggest that the universe is infinite in extent with a finite age, as described by the Friedmann–Lemaître–Robertson–Walker (FLRW) models.Will the Universe expand forever?
, WMAP website at NASA.
These FLRW models thus support inflationary models and the standard model of cosmology, describing a
flat Flat or flats may refer to: Architecture * Flat (housing), an apartment in the United Kingdom, Ireland, Australia and other Commonwealth countries Arts and entertainment * Flat (music), a symbol () which denotes a lower pitch * Flat (soldier), ...
, homogeneous universe presently dominated by
dark matter Dark matter is a hypothetical form of matter thought to account for approximately 85% of the matter in the universe. Dark matter is called "dark" because it does not appear to interact with the electromagnetic field, which means it does not a ...
and
dark energy In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. The first observational evidence for its existence came from measurements of supernovas, which showed that the univer ...
.


Support of life

The universe may be ''fine-tuned''; the Fine-tuned universe hypothesis is the proposition that the conditions that allow the existence of observable
life Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energ ...
in the universe can only occur when certain universal fundamental physical constants lie within a very narrow range of values, so that if any of several fundamental constants were only slightly different, the universe would have been unlikely to be conducive to the establishment and development of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
, astronomical structures, elemental diversity, or life as it is understood. The proposition is discussed among
philosophers A philosopher is a person who practices or investigates philosophy. The term ''philosopher'' comes from the grc, φιλόσοφος, , translit=philosophos, meaning 'lover of wisdom'. The coining of the term has been attributed to the Greek th ...
,
scientist A scientist is a person who conducts Scientific method, scientific research to advance knowledge in an Branches of science, area of the natural sciences. In classical antiquity, there was no real ancient analog of a modern scientist. Instead, ...
s,
theologians Theology is the systematic study of the nature of the divine and, more broadly, of religious belief. It is taught as an academic discipline, typically in universities and seminaries. It occupies itself with the unique content of analyzing the s ...
, and proponents of
creationism Creationism is the religious belief that nature, and aspects such as the universe, Earth, life, and humans, originated with supernatural acts of divine creation. Gunn 2004, p. 9, "The ''Concise Oxford Dictionary'' says that creationism is 't ...
.


Composition

The universe is composed almost completely of dark energy, dark matter, and
ordinary matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic par ...
. Other contents are
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
(estimated to constitute from 0.005% to close to 0.01% of the total mass-energy of the universe) and
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
. The proportions of all types of matter and energy have changed over the history of the universe. The total amount of electromagnetic radiation generated within the universe has decreased by 1/2 in the past 2 billion years. Today, ordinary matter, which includes atoms, stars, galaxies, and
life Life is a quality that distinguishes matter that has biological processes, such as signaling and self-sustaining processes, from that which does not, and is defined by the capacity for growth, reaction to stimuli, metabolism, energ ...
, accounts for only 4.9% of the contents of the Universe. The present overall
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
of this type of matter is very low, roughly 4.5 × 10−31 grams per cubic centimetre, corresponding to a density of the order of only one proton for every four cubic metres of volume. The nature of both dark energy and dark matter is unknown. Dark matter, a mysterious form of matter that has not yet been identified, accounts for 26.8% of the cosmic contents. Dark energy, which is the energy of empty space and is causing the expansion of the universe to accelerate, accounts for the remaining 68.3% of the contents. Matter, dark matter, and dark energy are distributed homogeneously throughout the universe over length scales longer than 300 million light-years or so. However, over shorter length-scales, matter tends to clump hierarchically; many
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s are condensed into
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, most stars into galaxies, most galaxies into clusters, superclusters and, finally, large-scale galactic filaments. The observable universe contains as many as 200 billion galaxies and, overall, as many as an estimated stars (more stars than all the grains of sand on planet
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
). Typical galaxies range from dwarfs with as few as ten million (107) stars up to giants with one
trillion ''Trillion'' is a number with two distinct definitions: * 1,000,000,000,000, i.e. one million million, or (ten to the twelfth power), as defined on the short scale. This is now the meaning in both American and British English. * 1,000,000,000,0 ...
(1012) stars. Between the larger structures are
voids Void may refer to: Science, engineering, and technology * Void (astronomy), the spaces between galaxy filaments that contain no galaxies * Void (composites), a pore that remains unoccupied in a composite material * Void, synonym for vacuum, a s ...
, which are typically 10–150 Mpc (33 million–490 million ly) in diameter. The
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye ...
is in the
Local Group The Local Group is the galaxy group that includes the Milky Way. It has a total diameter of roughly , and a total mass of the order of . It consists of two collections of galaxies in a "dumbbell" shape: the Milky Way and its satellites form ...
of galaxies, which in turn is in the
Laniakea Supercluster The Laniakea Supercluster (; Hawaiian for "open skies" or "immense heaven") is the galaxy supercluster that is home to the Milky Way and approximately 100,000 other nearby galaxies. It was defined in September 2014, when a group of astronom ...
. This supercluster spans over 500 million light-years, while the Local Group spans over 10 million light-years. The Universe also has vast regions of relative emptiness; the largest known void measures 1.8 billion ly (550 Mpc) across. The observable universe is
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
on scales significantly larger than superclusters, meaning that the statistical properties of the universe are the same in all directions as observed from Earth. The universe is bathed in highly isotropic
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
that corresponds to a
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
blackbody spectrum A black body or blackbody is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. The name "black body" is given because it absorbs all colors of light. A black body ...
of roughly 2.72548
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
s. The hypothesis that the large-scale universe is homogeneous and isotropic is known as the
cosmological principle In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is homogeneous and isotropic when viewed on a large enough scale, since the forces are expected to act uniformly throu ...
. A universe that is both homogeneous and isotropic looks the same from all vantage points. p. 2. and has no center.


Dark energy

An explanation for why the expansion of the universe is accelerating remains elusive. It is often attributed to "dark energy", an unknown form of energy that is hypothesized to permeate space. On a
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement. The principle is described by the physicis ...
basis, the density of dark energy (~ 7 × 10−30 g/cm3) is much less than the density of ordinary matter or dark matter within galaxies. However, in the present dark-energy era, it dominates the mass–energy of the universe because it is uniform across space. Two proposed forms for dark energy are the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
, a ''constant'' energy density filling space homogeneously, and
scalar fields In mathematics and physics, a scalar field is a function (mathematics), function associating a single number to every point (geometry), point in a space (mathematics), space – possibly physical space. The scalar may either be a pure Scalar ( ...
such as quintessence or moduli, ''dynamic'' quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant can be formulated to be equivalent to
vacuum energy Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum. The effects of vacuum energy can be experiment ...
. Scalar fields having only a slight amount of spatial inhomogeneity would be difficult to distinguish from a cosmological constant.


Dark matter

Dark matter is a hypothetical kind of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
that is invisible to the entire
electromagnetic spectrum The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from ...
, but which accounts for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe. Other than
neutrinos A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is ...
, a form of
hot dark matter Hot dark matter (HDM) is a theoretical form of dark matter which consists of particles that travel with ultrarelativistic velocities. Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is character ...
, dark matter has not been detected directly, making it one of the greatest mysteries in modern
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
. Dark matter neither emits nor absorbs light or any other
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
at any significant level. Dark matter is estimated to constitute 26.8% of the total mass–energy and 84.5% of the total matter in the universe.Sean Carroll, Ph.D., Caltech, 2007, The Teaching Company, ''Dark Matter, Dark Energy: The Dark Side of the Universe'', Guidebook Part 2 p. 46, Accessed October 7, 2013, "...dark matter: An invisible, essentially collisionless component of matter that makes up about 25 percent of the energy density of the universe... it's a different kind of particle... something not yet observed in the laboratory..."


Ordinary matter

The remaining 4.9% of the mass–energy of the universe is ordinary matter, that is,
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s,
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s,
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
s and the objects they form. This matter includes
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s, which produce nearly all of the light we see from galaxies, as well as interstellar gas in the interstellar and intergalactic media,
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s, and all the objects from everyday life that we can bump into, touch or squeeze. As a matter of fact, the great majority of ordinary matter in the universe is unseen, since visible stars and gas inside galaxies and clusters account for less than 10 per cent of the ordinary matter contribution to the mass-energy density of the universe. Ordinary matter commonly exists in four states (or phases):
solid Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
,
liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
,
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
, and
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
. However, advances in experimental techniques have revealed other previously theoretical phases, such as
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.67&n ...
s and
fermionic condensate A fermionic condensate or Fermi–Dirac condensate is a superfluid phase formed by fermionic particles at low temperatures. It is closely related to the Bose–Einstein condensate, a superfluid phase formed by bosonic atoms under similar cond ...
s. Ordinary matter is composed of two types of
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s:
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s and
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s. For example, the proton is formed of two
up quarks The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quark ...
and one
down quark The down quark or d quark (symbol: d) is the second-lightest of all quarks, a type of elementary particle, and a major constituent of matter. Together with the up quark, it forms the neutrons (one up quark, two down quarks) and protons (two up ...
; the neutron is formed of two down quarks and one up quark; and the electron is a kind of lepton. An atom consists of an
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron i ...
, made up of protons and neutrons, and electrons that orbit the nucleus. Because most of the mass of an atom is concentrated in its nucleus, which is made up of
baryons In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
, astronomers often use the term ''baryonic matter'' to describe ordinary matter, although a small fraction of this "baryonic matter" is electrons. Soon after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, primordial protons and neutrons formed from the
quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a 1 ...
of the early universe as it cooled below two trillion degrees. A few minutes later, in a process known as
Big Bang nucleosynthesis In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen ( hydrogen-1, 1H, having a single proton as a nucleu ...
, nuclei formed from the primordial protons and neutrons. This nucleosynthesis formed lighter elements, those with small atomic numbers up to
lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid el ...
and
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
, but the abundance of heavier elements dropped off sharply with increasing atomic number. Some
boron Boron is a chemical element with the symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the ''boron group'' it has th ...
may have been formed at this time, but the next heavier element,
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
, was not formed in significant amounts. Big Bang nucleosynthesis shut down after about 20 minutes due to the rapid drop in temperature and density of the expanding universe. Subsequent formation of heavier elements resulted from stellar nucleosynthesis and supernova nucleosynthesis.


Particles

Ordinary matter and the forces that act on matter can be described in terms of
elementary particle In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions ( quarks, leptons, an ...
s. These particles are sometimes described as being fundamental, since they have an unknown substructure, and it is unknown whether or not they are composed of smaller and even more fundamental particles. Of central importance is the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
, a theory that is concerned with
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
interactions and the weak and strong nuclear interactions. The Standard Model is supported by the experimental confirmation of the existence of particles that compose matter:
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s and
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s, and their corresponding "
antimatter In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioac ...
" duals, as well as the force particles that mediate
interactions Interaction is action that occurs between two or more objects, with broad use in philosophy and the sciences. It may refer to: Science * Interaction hypothesis, a theory of second language acquisition * Interaction (statistics) * Interactions o ...
: the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
, the
W and Z bosons In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are , , and ...
, and the
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
. The Standard Model predicted the existence of the recently discovered Higgs boson, a particle that is a manifestation of a field within the universe that can endow particles with mass. Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything". The Standard Model does not, however, accommodate gravity. A true force-particle "theory of everything" has not been attained.


Hadrons

A hadron is a
composite particle This is a list of known and hypothesized particles. Elementary particles Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental ob ...
made of
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s held together by the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
. Hadrons are categorized into two families:
baryon In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classified ...
s (such as
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s) made of three quarks, and
meson In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticles ...
s (such as pions) made of one quark and one antiparticle, antiquark. Of the hadrons, protons are stable, and neutrons bound within atomic nuclei are stable. Other hadrons are unstable under ordinary conditions and are thus insignificant constituents of the modern universe. From approximately 10−6 seconds after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, during a period is known as the
hadron epoch In physical cosmology, the hadron epoch started 20 microseconds after the Big Bang. The temperature of the universe had fallen sufficiently to allow the quarks from the preceding quark epoch to bind together into hadrons. Initially, the temperatur ...
, the temperature of the universe had fallen sufficiently to allow quarks to bind together into hadrons, and the mass of the universe was dominated by hadrons. Initially, the temperature was high enough to allow the formation of hadron/anti-hadron pairs, which kept matter and antimatter in
thermal equilibrium Two physical systems are in thermal equilibrium if there is no net flow of thermal energy between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in ...
. However, as the temperature of the universe continued to fall, hadron/anti-hadron pairs were no longer produced. Most of the hadrons and anti-hadrons were then eliminated in particle-antiparticle annihilation reactions, leaving a small residual of hadrons by the time the universe was about one second old.


Leptons

A lepton is an elementary particle, elementary, half-integer spin particle that does not undergo strong interactions but is subject to the Pauli exclusion principle; no two leptons of the same species can be in exactly the same state at the same time. Two main classes of leptons exist: electric charge, charged leptons (also known as the ''electron-like'' leptons), and neutral leptons (better known as
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
s). Electrons are stable and the most common charged lepton in the universe, whereas muons and tau (particle), taus are unstable particle that quickly decay after being produced in high energy physics, high energy collisions, such as those involving cosmic rays or carried out in particle accelerators. Charged leptons can combine with other particles to form various
composite particle This is a list of known and hypothesized particles. Elementary particles Elementary particles are particles with no measurable internal structure; that is, it is unknown whether they are composed of other particles. They are the fundamental ob ...
s such as
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s and positronium. The
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
governs nearly all of chemistry, as it is found in
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s and is directly tied to all chemical property, chemical properties. Neutrinos rarely interact with anything, and are consequently rarely observed. Neutrinos stream throughout the universe but rarely interact with normal matter. The
lepton epoch In physical cosmology, the lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the Universe. It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons a ...
was the period in the evolution of the early universe in which the
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s dominated the mass of the universe. It started roughly 1 second after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, after the majority of hadrons and anti-hadrons annihilated each other at the end of the
hadron epoch In physical cosmology, the hadron epoch started 20 microseconds after the Big Bang. The temperature of the universe had fallen sufficiently to allow the quarks from the preceding quark epoch to bind together into hadrons. Initially, the temperatur ...
. During the lepton epoch the temperature of the universe was still high enough to create lepton/anti-lepton pairs, so leptons and anti-leptons were in thermal equilibrium. Approximately 10 seconds after the Big Bang, the temperature of the universe had fallen to the point where lepton/anti-lepton pairs were no longer created. Most leptons and anti-leptons were then eliminated in annihilation reactions, leaving a small residue of leptons. The mass of the universe was then dominated by
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
s as it entered the following
photon epoch In physical cosmology, the photon epoch was the period in the evolution of the early universe in which photons dominated the energy of the universe. The photon epoch started after most leptons and anti-leptons were annihilated at the end of the ...
.


Photons

A photon is the quantum of light and all other forms of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic field, electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, inf ...
. It is the force carrier for the electromagnetic force, even when Static forces and virtual-particle exchange, static via virtual photons. The effects of this force are easily observable at the microscopic scale, microscopic and at the macroscopic scale, macroscopic level because the photon has zero rest mass; this allows long distance fundamental interaction, interactions. Like all elementary particles, photons are currently best explained by quantum mechanics and exhibit wave–particle duality, exhibiting properties of waves and of wikt:particle, particles. The photon epoch started after most leptons and anti-leptons were annihilation, annihilated at the end of the lepton epoch, about 10 seconds after the Big Bang. Atomic nuclei were created in the process of nucleosynthesis which occurred during the first few minutes of the photon epoch. For the remainder of the photon epoch the universe contained a hot dense
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
of nuclei, electrons and photons. About 380,000 years after the Big Bang, the temperature of the Universe fell to the point where nuclei could combine with electrons to create neutral atoms. As a result, photons no longer interacted frequently with matter and the universe became transparent. The highly redshifted photons from this period form the cosmic microwave background. Tiny variations in temperature and density detectable in the CMB were the early "seeds" from which all subsequent structure formation took place.


Cosmological models


Model of the universe based on general relativity

General relativity is the Differential geometry, geometric Theoretical physics, theory of
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
published by Albert Einstein in 1915 and the current description of gravitation in modern physics. It is the basis of current Physical cosmology, cosmological models of the universe. General relativity generalizes special relativity and Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
and Time in physics, time, or spacetime. In particular, the
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
of spacetime is directly related to the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
and
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
of whatever
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
and radiation are present. The relation is specified by the Einstein field equations, a system of partial differential equations. In general relativity, the distribution of matter and energy determines the geometry of spacetime, which in turn describes the acceleration of matter. Therefore, solutions of the Einstein field equations describe the evolution of the universe. Combined with measurements of the amount, type, and distribution of matter in the universe, the equations of general relativity describe the evolution of the universe over time. With the assumption of the
cosmological principle In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is homogeneous and isotropic when viewed on a large enough scale, since the forces are expected to act uniformly throu ...
that the universe is homogeneous and isotropic everywhere, a specific solution of the field equations that describes the universe is the metric (general relativity), metric tensor called the Friedmann–Lemaître–Robertson–Walker metric, : ds^2 = -c^ dt^2 + R(t)^2 \left( \frac + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\phi^2 \right) where (''r'', θ, φ) correspond to a spherical coordinate system. This metric has only two undetermined parameters. An overall dimensionless length scale factor (cosmology), scale factor ''R'' describes the size scale of the universe as a function of time (an increase in ''R'' is the expansion of the universe), and a curvature index ''k'' describes the geometry. The index ''k'' is defined so that it can take only one of three values: 0, corresponding to flat
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small ...
; 1, corresponding to a space of positive
curvature In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonic ...
; or −1, corresponding to a space of positive or negative curvature. The value of ''R'' as a function of time ''t'' depends upon ''k'' and the
cosmological constant In cosmology, the cosmological constant (usually denoted by the Greek capital letter lambda: ), alternatively called Einstein's cosmological constant, is the constant coefficient of a term that Albert Einstein temporarily added to his field eq ...
''Λ''. The cosmological constant represents the energy density of the vacuum of space and could be related to dark energy. The equation describing how ''R'' varies with time is known as the Friedmann equation after its inventor, Alexander Friedmann. The solutions for ''R(t)'' depend on ''k'' and ''Λ'', but some qualitative features of such solutions are general. First and most importantly, the length scale ''R'' of the universe can remain constant ''only'' if the universe is perfectly isotropic with positive curvature (''k''=1) and has one precise value of density everywhere, as first noted by Albert Einstein. However, this equilibrium is unstable: because the universe is inhomogeneous on smaller scales, ''R'' must change over time. When ''R'' changes, all the spatial distances in the universe change in tandem; there is an overall expansion or contraction of space itself. This accounts for the observation that galaxies appear to be flying apart; the space between them is stretching. The stretching of space also accounts for the apparent paradox that two galaxies can be 40 billion light-years apart, although they started from the same point 13.8 billion years ago and never moved faster than the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. Second, all solutions suggest that there was a
gravitational singularity A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is so intense that spacetime itself breaks down catastrophically. As such, a singularity is by definition no longer part of the regular sp ...
in the past, when ''R'' went to zero and matter and energy were infinitely dense. It may seem that this conclusion is uncertain because it is based on the questionable assumptions of perfect homogeneity and isotropy (the cosmological principle) and that only the gravitational interaction is significant. However, the Penrose–Hawking singularity theorems show that a singularity should exist for very general conditions. Hence, according to Einstein's field equations, ''R'' grew rapidly from an unimaginably hot, dense state that existed immediately following this singularity (when ''R'' had a small, finite value); this is the essence of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
model of the universe. Understanding the singularity of the Big Bang likely requires a quantum theory of gravity, which has not yet been formulated. Third, the curvature index ''k'' determines the sign of the mean spatial curvature of spacetime averaged over sufficiently large length scales (greater than about a billion
light-year A light-year, alternatively spelled light year, is a large unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (), or 5.88 trillion miles ().One trillion here is taken to be 1012 ...
s). If ''k''=1, the curvature is positive and the universe has a finite volume. A universe with positive curvature is often visualized as a 3-sphere, three-dimensional sphere embedded in a four-dimensional space. Conversely, if ''k'' is zero or negative, the universe has an infinite volume. It may seem counter-intuitive that an infinite and yet infinitely dense universe could be created in a single instant when ''R'' = 0, but exactly that is predicted mathematically when ''k'' does not equal 1. By analogy, an infinite plane has zero curvature but infinite area, whereas an infinite cylinder is finite in one direction and a torus is finite in both. A toroidal universe could behave like a normal universe with periodic boundary conditions. The
ultimate fate of the universe The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational e ...
is still unknown because it depends critically on the curvature index ''k'' and the cosmological constant ''Λ''. If the universe were sufficiently dense, ''k'' would equal +1, meaning that its average curvature throughout is positive and the universe will eventually recollapse in a Big Crunch, possibly starting a new universe in a Big Bounce. Conversely, if the universe were insufficiently dense, ''k'' would equal 0 or −1 and the universe would expand forever, cooling off and eventually reaching the Future of an expanding universe, Big Freeze and the heat death of the universe. Modern data suggests that the rate of expansion of the universe is not decreasing, as originally expected, but increasing; if this continues indefinitely, the universe may eventually reach a Big Rip. Observationally, the universe appears to be flat (''k'' = 0), with an overall density that is very close to the critical value between recollapse and eternal expansion.


Multiverse hypothesis

Some speculative theories have proposed that our universe is but one of a set (mathematics), set of disconnected universes, collectively denoted as the
multiverse The multiverse is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The di ...
, challenging or enhancing more limited definitions of the universe. Scientific multiverse models are distinct from concepts such as plane (esotericism), alternate planes of consciousness and simulated reality. Max Tegmark developed a four-part Multiverse#Max Tegmark's four levels, classification scheme for the different types of multiverses that scientists have suggested in response to various Physics problems. An example of such multiverses is the one resulting from the bubble universe theory, chaotic inflation model of the early universe.
Another is the multiverse resulting from the
many-worlds interpretation The many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum me ...
of quantum mechanics. In this interpretation, parallel worlds are generated in a manner similar to quantum superposition and decoherence, with all states of the wave functions being realized in separate worlds. Effectively, in the many-worlds interpretation the multiverse evolves as a universal wavefunction. If the Big Bang that created our multiverse created an ensemble of multiverses, the wave function of the ensemble would be entangled in this sense. The least controversial, but still highly disputed, category of multiverse in Tegmark's scheme is Multiverse#Level I: An extension of our universe, Level I. The multiverses of this level are composed by distant spacetime events "in our own universe". Tegmark and others have argued that, if space is infinite, or sufficiently large and uniform, identical instances of the history of Earth's entire Hubble volume occur every so often, simply by chance. Tegmark calculated that our nearest so-called doppelgänger, is 1010115 metres away from us (a double exponential function larger than a googolplex). However, the arguments used are of speculative nature. Additionally, it would be impossible to scientifically verify the existence of an identical Hubble volume. It is possible to conceive of disconnected spacetimes, each existing but unable to interact with one another. An easily visualized metaphor of this concept is a group of separate soap bubbles, in which observers living on one soap bubble cannot interact with those on other soap bubbles, even in principle. According to one common terminology, each "soap bubble" of spacetime is denoted as a ''universe'', whereas our particular spacetime is denoted as ''the universe'', just as we call our moon ''the Moon''. The entire collection of these separate spacetimes is denoted as the multiverse. With this terminology, different ''universes'' are not causality, causally connected to each other. In principle, the other unconnected ''universes'' may have different
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
alities and Topology, topologies of spacetime, different forms of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
, and different
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) a ...
s and physical constants, although such possibilities are purely speculative. Others consider each of several bubbles created as part of chaotic inflation to be separate ''universes'', though in this model these universes all share a causal origin.


Historical conceptions

Historically, there have been many ideas of the cosmos (cosmologies) and its origin (cosmogonies). Theories of an impersonal universe governed by physical laws were first proposed by the Greeks and Indians. Ancient Chinese philosophy encompassed the notion of the universe including both all of space and all of time. Over the centuries, improvements in astronomical observations and theories of motion and gravitation led to ever more accurate descriptions of the universe. The modern era of cosmology began with Albert Einstein's 1915 general relativity, general theory of relativity, which made it possible to quantitatively predict the origin, evolution, and conclusion of the universe as a whole. Most modern, accepted theories of cosmology are based on general relativity and, more specifically, the predicted
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
.


Mythologies

Many cultures have List of creation myths, stories describing the origin of the world and universe. Cultures generally regard these stories as having some truth. There are however many differing beliefs in how these stories apply amongst those believing in a supernatural origin, ranging from a god directly creating the universe as it is now to a god just setting the "wheels in motion" (for example via mechanisms such as the big bang and evolution). Ethnologists and anthropologists who study myths have developed various classification schemes for the various themes that appear in creation stories. For example, in one type of story, the world is born from a world egg; such stories include the Finnish people, Finnish epic poetry, epic poem ''Kalevala'', the China, Chinese story of Pangu or the History of India, Indian Brahmanda Purana. In related stories, the universe is created by a single entity emanating or producing something by him- or herself, as in the Tibetan Buddhism concept of Adi-Buddha, the ancient Greece, ancient Greek story of Gaia (mythology), Gaia (Mother Earth), the Aztec mythology, Aztec goddess Coatlicue myth, the ancient Egyptian religion, ancient Egyptian Ennead, god Atum story, and the Judeo-Christian Genesis creation narrative in which the God in Abrahamic religions, Abrahamic God created the universe. In another type of story, the universe is created from the union of male and female deities, as in the Maori mythology, Maori story of Rangi and Papa. In other stories, the universe is created by crafting it from pre-existing materials, such as the corpse of a dead god—as from Tiamat in the Babylonian epic ''Enuma Elish'' or from the giant Ymir in Norse mythology—or from chaotic materials, as in Izanagi and Izanami in Japanese mythology. In other stories, the universe emanates from fundamental principles, such as Brahman and Prakrti, the Serer creation myth, creation myth of the Serer people, Serers, or the yin and yang of the Tao.


Philosophical models

The pre-Socratic philosophy, pre-Socratic Greek philosophers and Indian philosophers developed some of the earliest philosophical concepts of the universe. The earliest Greek philosophers noted that appearances can be deceiving, and sought to understand the underlying reality behind the appearances. In particular, they noted the ability of matter to change forms (e.g., ice to water to steam) and several philosophers proposed that all the physical materials in the world are different forms of a single primordial material, or ''arche''. The first to do so was Thales, who proposed this material to be Water (classical element), water. Thales' student, Anaximander, proposed that everything came from the limitless ''Apeiron (cosmology), apeiron''. Anaximenes of Miletus, Anaximenes proposed the primordial material to be Air (classical element), air on account of its perceived attractive and repulsive qualities that cause the ''arche'' to condense or dissociate into different forms. Anaxagoras proposed the principle of ''Nous'' (Mind), while Heraclitus proposed fire (classical element), fire (and spoke of ''logos''). Empedocles proposed the elements to be earth, water, air and fire. His four-element model became very popular. Like
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samos, Samian, or simply ; in Ionian Greek; ) was an ancient Ionians, Ionian Ancient Greek philosophy, Greek philosopher and the eponymou ...
, Plato believed that all things were composed of number, with Empedocles' elements taking the form of the Platonic solids. Democritus, and later philosophers—most notably Leucippus—proposed that the universe is composed of indivisible
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s moving through a void (astronomy), void (vacuum), although Aristotle did not believe that to be feasible because air, like water, offers Drag (physics), resistance to motion. Air will immediately rush in to fill a void, and moreover, without resistance, it would do so indefinitely fast. Although Heraclitus argued for eternal change, his contemporary Parmenides made the radical suggestion that all change is an illusion, that the true underlying reality is eternally unchanging and of a single nature. Parmenides denoted this reality as (The One). Parmenides' idea seemed implausible to many Greeks, but his student Zeno of Elea challenged them with several famous Zeno's paradoxes, paradoxes. Aristotle responded to these paradoxes by developing the notion of a potential countable infinity, as well as the infinitely divisible continuum. Unlike the eternal and unchanging cycles of time, he believed that the world is bounded by the celestial spheres and that cumulative stellar magnitude is only finitely multiplicative. The Indian philosophy, Indian philosopher Kanada (philosopher), Kanada, founder of the Vaisheshika school, developed a notion of atomism and proposed that light and heat were varieties of the same substance. In the 5th century AD, the Buddhist atomism, Buddhist atomist philosopher Dignāga proposed
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, and ...
s to be point-sized, durationless, and made of energy. They denied the existence of substantial matter and proposed that movement consisted of momentary flashes of a stream of energy. The notion of temporal finitism was inspired by the doctrine of creation shared by the three Abrahamic religions: Judaism, Christianity and Islam. The Christian philosophy, Christian philosopher, John Philoponus, presented the philosophical arguments against the ancient Greek notion of an infinite past and future. Philoponus' arguments against an infinite past were used by the Early Islamic philosophy, early Muslim philosopher, Al-Kindi (Alkindus); the Jewish philosophy, Jewish philosopher, Saadia Gaon (Saadia ben Joseph); and the Kalam, Muslim theologian, Al-Ghazali (Algazel).


Astronomical concepts

Astronomical models of the universe were proposed soon after astronomy began with the Babylonian astronomy, Babylonian astronomers, who viewed the universe as a Flat Earth, flat disk floating in the ocean, and this forms the premise for early Greek maps like those of Anaximander and Hecataeus of Miletus. Later Ancient Greece, Greek philosophers, observing the motions of the heavenly bodies, were concerned with developing models of the universe-based more profoundly on empirical evidence. The first coherent model was proposed by Eudoxus of Cnidos. According to Aristotle's physical interpretation of the model, celestial spheres eternally uniform circular motion, rotate with uniform motion around a stationary Earth. Normal classical elements, matter is entirely contained within the terrestrial sphere. ''De Mundo'' (composed before 250 BC or between 350 and 200 BC), stated, "Five elements, situated in spheres in five regions, the less being in each case surrounded by the greater—namely, earth surrounded by water, water by air, air by fire, and fire by ether—make up the whole universe". This model was also refined by Callippus and after concentric spheres were abandoned, it was brought into nearly perfect agreement with astronomical observations by Ptolemy. The success of such a model is largely due to the mathematical fact that any function (such as the position of a planet) can be decomposed into a set of circular functions (the Fourier series, Fourier modes). Other Greek scientists, such as the Pythagoreans, Pythagorean philosopher Philolaus, postulated (according to Stobaeus account) that at the center of the universe was a "central fire" around which the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
,
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, Moon and
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s revolved in uniform circular motion. The Greek astronomy, Greek astronomer Aristarchus of Samos was the first known individual to propose a Heliocentrism, heliocentric model of the universe. Though the original text has been lost, a reference in Archimedes' book ''The Sand Reckoner'' describes Aristarchus's heliocentric model. Archimedes wrote:
You, King Gelon, are aware the universe is the name given by most astronomers to the sphere the center of which is the center of the Earth, while its radius is equal to the straight line between the center of the Sun and the center of the Earth. This is the common account as you have heard from astronomers. But Aristarchus has brought out a book consisting of certain hypotheses, wherein it appears, as a consequence of the assumptions made, that the universe is many times greater than the universe just mentioned. His hypotheses are that the fixed stars and the Sun remain unmoved, that the Earth revolves about the Sun on the circumference of a circle, the Sun lying in the middle of the orbit, and that the sphere of fixed stars, situated about the same center as the Sun, is so great that the circle in which he supposes the Earth to revolve bears such a proportion to the distance of the fixed stars as the center of the sphere bears to its surface
Aristarchus thus believed the stars to be very far away, and saw this as the reason why stellar parallax had not been observed, that is, the stars had not been observed to move relative each other as the Earth moved around the Sun. The stars are in fact much farther away than the distance that was generally assumed in ancient times, which is why stellar parallax is only detectable with precision instruments. The geocentric model, consistent with planetary parallax, was assumed to be an explanation for the unobservability of the parallel phenomenon, stellar parallax. The rejection of the heliocentric view was apparently quite strong, as the following passage from Plutarch suggests (''On the Apparent Face in the Orb of the Moon''):
Cleanthes [a contemporary of Aristarchus and head of the Stoics] thought it was the duty of the Greeks to indict Aristarchus of Samos on the charge of impiety for putting in motion the Hearth of the Universe [i.e. the Earth], ... supposing the heaven to remain at rest and the Earth to revolve in an oblique circle, while it rotates, at the same time, about its own axis
The only other astronomer from antiquity known by name who supported Aristarchus's heliocentric model was Seleucus of Seleucia, a Hellenistic astronomer who lived a century after Aristarchus. According to Plutarch, Seleucus was the first to prove the heliocentric system through reasoning, but it is not known what arguments he used. Seleucus' arguments for a heliocentric cosmology were probably related to the phenomenon of tides. According to Strabo (1.1.9), Seleucus was the first to state that the tides are due to the attraction of the Moon, and that the height of the tides depends on the Moon's position relative to the Sun. Alternatively, he may have proved heliocentricity by determining the constants of a Geometry, geometric model for it, and by developing methods to compute planetary positions using this model, like what
Nicolaus Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic Church, Catholic cano ...
later did in the 16th century. During the Middle Ages, Heliocentrism, heliocentric models were also proposed by the Indian astronomy, Indian astronomer Aryabhata, and by the Islamic astronomy, Persian astronomers Ja'far ibn Muhammad Abu Ma'shar al-Balkhi, Albumasar and Al-Sijzi. The Aristotelian model was accepted in the Western world for roughly two millennia, until Copernicus revived Aristarchus's perspective that the astronomical data could be explained more plausibly if the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
rotated on its axis and if the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
were placed at the center of the universe. As noted by Copernicus himself, the notion that the Earth's rotation, Earth rotates is very old, dating at least to Philolaus (c. 450 BC), Heraclides Ponticus (c. 350 BC) and Ecphantus the Pythagorean. Roughly a century before Copernicus, the Christian scholar Nicholas of Cusa also proposed that the Earth rotates on its axis in his book, ''On Learned Ignorance'' (1440). Al-Sijzi also proposed that the Earth rotates on its axis. Empirical research, Empirical evidence for the Earth's rotation on its axis, using the phenomenon of comets, was given by Nasīr al-Dīn al-Tūsī, Tusi (1201–1274) and Ali Qushji (1403–1474). This cosmology was accepted by
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
, Christiaan Huygens and later scientists.#Misner, Misner, Thorne and Wheeler, pp. 755–56. Edmund Halley (1720)#Misner, Misner, Thorne and Wheeler, p. 756. and Jean-Philippe de Chéseaux (1744) noted independently that the assumption of an infinite space filled uniformly with stars would lead to the prediction that the nighttime sky would be as bright as the Sun itself; this became known as Olbers' paradox in the 19th century. Newton believed that an infinite space uniformly filled with matter would cause infinite forces and instabilities causing the matter to be crushed inwards under its own gravity. This instability was clarified in 1902 by the Jeans instability criterion. One solution to these paradoxes is the Carl Charlier, Charlier Universe, in which the matter is arranged hierarchically (systems of orbiting bodies that are themselves orbiting in a larger system, ''ad infinitum'') in a fractal way such that the universe has a negligibly small overall density; such a cosmological model had also been proposed earlier in 1761 by Johann Heinrich Lambert.#Misner, Misner, Thorne and Wheeler, p. 757. A significant astronomical advance of the 18th century was the realization by Thomas Wright (astronomer), Thomas Wright, Immanuel Kant and others of nebulae. In 1919, when the Hooker Telescope was completed, the prevailing view still was that the universe consisted entirely of the Milky Way Galaxy. Using the Hooker Telescope, Edwin Hubble identified Cepheid variables in several spiral nebulae and in 1922–1923 proved conclusively that Andromeda Galaxy, Andromeda Nebula and Triangulum Nebula, Triangulum among others, were entire galaxies outside our own, thus proving that universe consists of a multitude of galaxies. The modern era of physical cosmology began in 1917, when Albert Einstein first applied his general theory of relativity to model the structure and dynamics of the universe.


See also

* Chronology of the universe * Cosmic Calendar (scaled down timeline) * Cosmic latte * Cosmos * Detailed logarithmic timeline * Earth's location in the universe * False vacuum * Future of an expanding universe * Galaxy And Mass Assembly survey * Heat death of the universe * History of the center of the Universe * Illustris project * Multiverse (set theory) (''Hyperverse'', ''Megaverse'' or ''Omniverse'') * Non-standard cosmology * Nucleocosmochronology * Panspermia * Rare Earth hypothesis * Religious cosmology * Space and survival * Terasecond and longer * Timeline of the early universe * Timeline of the far future * Timeline of the near future * Zero-energy universe


References

Footnotes Citations


Bibliography

* * * * * * *


External links


NASA/IPAC Extragalactic Database (NED)
/
NED-Distances
.

– ''LiveScience'', July 2021.
''This is why we will never know everything about our universe''
– ''Forbes'', May 2019. {{Authority control Universe, Articles containing video clips Astronomical dynamical systems Concepts in astronomy Environments Main topic articles Physical cosmology