Photon (other)
   HOME

TheInfoList



OR:

A photon () is an elementary particle that is a
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
of the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
, including electromagnetic radiation such as light and
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
s, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, (or about ). The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, Planck proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926,
Gilbert N. Lewis Gilbert Newton Lewis (October 23 or October 25, 1875 – March 23, 1946) was an American physical chemist and a Dean of the College of Chemistry at University of California, Berkeley. Lewis was best known for his discovery of the covalent bond a ...
popularized the term ''photon'' for these energy units. Subsequently, many other experiments validated Einstein's approach. In the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
of particle physics, photons and other elementary particles are described as a necessary consequence of physical laws having a certain
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
at every point in spacetime. The intrinsic properties of particles, such as charge, mass, and
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
, are determined by
gauge symmetry In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups) ...
. The photon concept has led to momentous advances in experimental and theoretical physics, including lasers, Bose–Einstein condensation,
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, and the probabilistic interpretation of quantum mechanics. It has been applied to photochemistry,
high-resolution microscopy Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techn ...
, and measurements of molecular distances. Moreover, photons have been studied as elements of
quantum computer Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
s, and for applications in optical imaging and
optical communication Optical communication, also known as optical telecommunication, is communication at a distance using light to carry information. It can be performed visually or by using electronic devices. The earliest basic forms of optical communication date b ...
such as quantum cryptography.


Nomenclature

The word ''quanta'' (singular ''quantum,'' Latin for '' how much'') was used before 1900 to mean particles or amounts of different quantities, including electricity. In 1900, the German physicist Max Planck was studying
black-body radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
, and he suggested that the experimental observations, specifically at shorter wavelengths, would be explained if the energy stored within a molecule was a "discrete quantity composed of an integral number of finite equal parts", which he called "energy elements". In 1905, Albert Einstein published a paper in which he proposed that many light-related phenomena—including black-body radiation and the photoelectric effect—would be better explained by modelling electromagnetic waves as consisting of spatially localized, discrete wave-packets.. An English translation is available from Wikisource. He called such a wave-packet ''a light quantum'' (German: ''ein Lichtquant''). The name ''photon'' derives from the
Greek word Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: * Greeks, an ethnic group. * Greek language, a branch of the Indo-European language family. ** Proto-Greek language, the assumed last common ances ...
for light, ' (transliterated ''phôs'').
Arthur Compton Arthur Holly Compton (September 10, 1892 – March 15, 1962) was an American physicist who won the Nobel Prize in Physics in 1927 for his 1923 discovery of the Compton effect, which demonstrated the particle nature of electromagnetic radia ...
used ''photon'' in 1928, referring to G.N. Lewis, who coined the term in a letter to '' Nature'' on 18 December 1926. The same name was used earlier but was never widely adopted before Lewis: in 1916 by the American physicist and psychologist Leonard T. Troland, in 1921 by the Irish physicist John Joly, in 1924 by the French physiologist René Wurmser (1890–1993), and in 1926 by the French physicist Frithiof Wolfers (1891–1971). The name was suggested initially as a unit related to the illumination of the eye and the resulting sensation of light and was used later in a physiological context. Although Wolfers's and Lewis's theories were contradicted by many experiments and never accepted, the new name was adopted by most physicists very soon after Compton used it. In physics, a photon is usually denoted by the symbol (the Greek letter
gamma Gamma (uppercase , lowercase ; ''gámma'') is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter re ...
). This symbol for the photon probably derives from gamma rays, which were discovered in 1900 by Paul Villard, named by Ernest Rutherford in 1903, and shown to be a form of electromagnetic radiation in 1914 by Rutherford and Edward Andrade. In
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
and optical engineering, photons are usually symbolized by , which is the
photon energy Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, ...
, where is the Planck constant and the Greek letter ( nu) is the photon's frequency.


Physical properties

A photon is massless, has no electric charge, and is a
stable particle In the physical sciences, a particle (or corpuscule in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from ...
. In a vacuum, a photon has three possible
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
states. The photon is the
gauge boson In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge ...
for electromagnetism, and therefore all other quantum numbers of the photon (such as lepton number, baryon number, and flavour quantum numbers) are zero. Also, the photon obeys Bose–Einstein statistics, and not Fermi-Dirac statistics. That is, they do ''not'' obey the Pauli exclusion principle and more than one can occupy the same bound quantum state. Photons are emitted in many natural processes. For example, when a charge is accelerated it emits
synchrotron radiation Synchrotron radiation (also known as magnetobremsstrahlung radiation) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in ...
. During a
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
, atomic or
nuclear Nuclear may refer to: Physics Relating to the nucleus of the atom: *Nuclear engineering *Nuclear physics *Nuclear power *Nuclear reactor *Nuclear weapon *Nuclear medicine *Radiation therapy *Nuclear warfare Mathematics *Nuclear space * Nuclear ...
transition to a lower energy level, photons of various energy will be emitted, ranging from
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
s to gamma rays. Photons can also be emitted when a particle and its corresponding antiparticle are annihilated (for example, electron–positron annihilation).


Relativistic energy and momentum

In empty space, the photon moves at (the speed of light) and its energy and
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
are related by , where is the magnitude of the momentum vector . This derives from the following relativistic relation, with : :E^ = p^ c^ + m^ c^ ~. The energy and momentum of a photon depend only on its frequency (\nu) or inversely, its wavelength (): :E = \hbar \, \omega = h \nu = \frac :\boldsymbol = \hbar \boldsymbol ~, where is the wave vector, where *   is the wave number, and *   is the angular frequency, and *   is the reduced Planck constant. Since \boldsymbol points in the direction of the photon's propagation, the magnitude of its momentum is :p \equiv \left, \boldsymbol \ = \hbar k = \frac = \frac ~.


Polarization and spin angular momentum

The photon also carries spin angular momentum, which is related to photon polarization. The angular momentum of the photon has two possible values, either or . These two possible values correspond to the two possible pure states of circular polarization. Collections of photons in a light beam may have mixtures of these two values; a linearly polarized light beam will act as if it were composed of equal numbers of the two possible angular momenta. The spin angular momentum of light does not depend on its frequency, and was experimentally verified by C. V. Raman and S. Bhagavantam in 1931.


Antiparticle annihilation

The annihilation of a particle with its antiparticle in free space must result in the creation of at least ''two'' photons for the following reason: In the
center of momentum frame In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The ''center of momentum'' of a system i ...
, the colliding antiparticles have no net momentum, whereas a single photon always has momentum (since, as we have seen, it is determined by the photon's frequency or wavelength, which cannot be zero). Hence, conservation of momentum (or equivalently, translational invariance) requires that at least two photons are created, with zero net momentum. The energy of the two photons, or, equivalently, their frequency, may be determined from conservation of four-momentum. Seen another way, the photon can be considered as its own antiparticle (thus an "antiphoton" is simply a normal photon with opposite momentum, equal polarization, and 180° out of phase). The reverse process, pair production, is the dominant mechanism by which high-energy photons such as gamma rays lose energy while passing through matter. That process is the reverse of "annihilation to one photon" allowed in the electric field of an atomic nucleus. The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
per unit time.


Experimental checks on photon mass

Current commonly accepted physical theories imply or assume the photon to be strictly massless. If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, ''c'', would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on speed that any object could theoretically attain in spacetime. Thus, it would still be the speed of spacetime ripples ( gravitational waves and gravitons), but it would not be the speed of photons. If a photon did have non-zero mass, there would be other effects as well. Coulomb's law would be modified and the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
would have an extra physical degree of freedom. These effects yield more sensitive experimental probes of the photon mass than the frequency dependence of the speed of light. If Coulomb's law is not exactly valid, then that would allow the presence of an
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
to exist within a hollow conductor when it is subjected to an external electric field. This provides a means for very-high-precision tests of Coulomb's law. A null result of such an experiment has set a limit of . Sharper upper limits on the mass of light have been obtained in experiments designed to detect effects caused by the galactic vector potential. Although the galactic vector potential is very large because the galactic
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
exists on very great length scales, only the magnetic field would be observable if the photon is massless. In the case that the photon has mass, the mass term ''m'A'A'' would affect the galactic plasma. The fact that no such effects are seen implies an upper bound on the photon mass of . The galactic vector potential can also be probed directly by measuring the torque exerted on a magnetized ring. Such methods were used to obtain the sharper upper limit of (the equivalent of ) given by the
Particle Data Group The Particle Data Group (or PDG) is an international collaboration of particle physicists that compiles and reanalyzes published results related to the properties of particles and fundamental interactions. It also publishes reviews of theoretical r ...
.Summary Table
/ref> These sharp limits from the non-observation of the effects caused by the galactic vector potential have been shown to be model-dependent. If the photon mass is generated via the Higgs mechanism then the upper limit of from the test of Coulomb's law is valid.


Historical development

In most theories up to the eighteenth century, light was pictured as being made up of particles. Since particle models cannot easily account for the refraction,
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
and
birefringence Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefring ...
of light, wave theories of light were proposed by René Descartes (1637),
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
(1665), and
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists of ...
(1678); however, particle models remained dominant, chiefly due to the influence of Isaac Newton. In the early 19th century, Thomas Young and August Fresnel clearly demonstrated the interference and diffraction of light, and by 1850 wave models were generally accepted. James Clerk Maxwell's 1865
prediction A prediction (Latin ''præ-'', "before," and ''dicere'', "to say"), or forecast, is a statement about a future event or data. They are often, but not always, based upon experience or knowledge. There is no universal agreement about the exact ...
This article followed a presentation by Maxwell on 8 December 1864 to the Royal Society. that light was an electromagnetic wave – which was confirmed experimentally in 1888 by Heinrich Hertz's detection of radio waves – seemed to be the final blow to particle models of light. The Maxwell wave theory, however, does not account for ''all'' properties of light. The Maxwell theory predicts that the energy of a light wave depends only on its
intensity Intensity may refer to: In colloquial use *Strength (disambiguation) *Amplitude * Level (disambiguation) * Magnitude (disambiguation) In physical sciences Physics *Intensity (physics), power per unit area (W/m2) *Field strength of electric, ma ...
, not on its frequency; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity. For example, some chemical reactions are provoked only by light of frequency higher than a certain threshold; light of frequency lower than the threshold, no matter how intense, does not initiate the reaction. Similarly, electrons can be ejected from a metal plate by shining light of sufficiently high frequency on it (the photoelectric effect); the energy of the ejected electron is related only to the light's frequency, not to its intensity. At the same time, investigations of
black-body radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
carried out over four decades (1860–1900) by various researchers culminated in Max Planck's hypothesis
English translation
/ref> that the energy of ''any'' system that absorbs or emits electromagnetic radiation of frequency is an integer multiple of an energy quantum As shown by Albert Einstein, some form of energy quantization ''must'' be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics. Since the Maxwell theory of light allows for all possible energies of electromagnetic radiation, most physicists assumed initially that the energy quantization resulted from some unknown constraint on the matter that absorbs or emits the radiation. In 1905, Einstein was the first to propose that energy quantization was a property of electromagnetic radiation itself. Although he accepted the validity of Maxwell's theory, Einstein pointed out that many anomalous experiments could be explained if the ''energy'' of a Maxwellian light wave were localized into point-like quanta that move independently of one another, even if the wave itself is spread continuously over space. In 1909. An English translation is available from Wikisource. and 1916, Also ''Physikalische Zeitschrift'', 18, 121–128 (1917). Einstein showed that, if
Planck's law In physics, Planck's law describes the spectral density of electromagnetic radiation emitted by a black body in thermal equilibrium at a given temperature , when there is no net flow of matter or energy between the body and its environment. At ...
regarding black-body radiation is accepted, the energy quanta must also carry
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
making them full-fledged particles. This photon momentum was observed experimentally by
Arthur Compton Arthur Holly Compton (September 10, 1892 – March 15, 1962) was an American physicist who won the Nobel Prize in Physics in 1927 for his 1923 discovery of the Compton effect, which demonstrated the particle nature of electromagnetic radia ...
, for which he received the Nobel Prize in 1927. The pivotal question then, was how to unify Maxwell's wave theory of light with its experimentally observed particle nature. The answer to this question occupied Albert Einstein for the rest of his life, and was solved in quantum electrodynamics and its successor, the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
. (See ' and ', below.) Einstein's 1905 predictions were verified experimentally in several ways in the first two decades of the 20th century, as recounted in Robert Millikan's Nobel lecture. However, before Compton's experiment showed that photons carried momentum proportional to their wave number (1922), most physicists were reluctant to believe that electromagnetic radiation itself might be particulate. (See, for example, the Nobel lectures of Wien, Planck and Millikan.) Instead, there was a widespread belief that energy quantization resulted from some unknown constraint on the matter that absorbed or emitted radiation. Attitudes changed over time. In part, the change can be traced to experiments such as those revealing Compton scattering, where it was much more difficult not to ascribe quantization to light itself to explain the observed results. Even after Compton's experiment, Niels Bohr, Hendrik Kramers and
John Slater John Slater may refer to: Business and government *John Slater (industrialist) (1776–1843), (American) father of John Fox Slater, brother and partner of Samuel Slater *John Fox Slater (1815–1884), American philanthropist, son of John Slater ( ...
made one last attempt to preserve the Maxwellian continuous electromagnetic field model of light, the so-called
BKS theory The Bohr–Kramers–Slater theory (BKS theory) was perhaps the final attempt at understanding the interaction of matter and electromagnetic radiation on the basis of the so-called old quantum theory, in which quantum phenomena are treated by imposi ...
. Also '' Zeitschrift für Physik'', 24, 69 (1924). An important feature of the BKS theory is how it treated the
conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
and the conservation of momentum. In the BKS theory, energy and momentum are only conserved on the average across many interactions between matter and radiation. However, refined Compton experiments showed that the conservation laws hold for individual interactions. Accordingly, Bohr and his co-workers gave their model "as honorable a funeral as possible". Nevertheless, the failures of the BKS model inspired Werner Heisenberg in his development of matrix mechanics. A few physicists persisted in developing semiclassical models in which electromagnetic radiation is not quantized, but matter appears to obey the laws of quantum mechanics. Although the evidence from chemical and physical experiments for the existence of photons was overwhelming by the 1970s, this evidence could not be considered as ''absolutely'' definitive; since it relied on the interaction of light with matter, and a sufficiently complete theory of matter could in principle account for the evidence. Nevertheless, ''all'' semiclassical theories were refuted definitively in the 1970s and 1980s by photon-correlation experiments. Hence, Einstein's hypothesis that quantization is a property of light itself is considered to be proven.


Wave–particle duality and uncertainty principles

Photons obey the laws of quantum mechanics, and so their behavior has both wave-like and particle-like aspects. When a photon is detected by a measuring instrument, it is registered as a single, particulate unit. However, the ''probability'' of detecting a photon is calculated by equations that describe waves. This combination of aspects is known as wave–particle duality. For example, the
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon i ...
for the location at which a photon might be detected displays clearly wave-like phenomena such as
diffraction Diffraction is defined as the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a s ...
and interference. A single photon passing through a double slit has its energy received at a point on the screen with a probability distribution given by its interference pattern determined by Maxwell's wave equations. However, experiments confirm that the photon is ''not'' a short pulse of electromagnetic radiation; a photon's Maxwell waves will diffract, but photon energy does not spread out as it propagates, nor does this energy divide when it encounters a
beam splitter A beam splitter or ''beamsplitter'' is an optical device that splits a beam of light into a transmitted and a reflected beam. It is a crucial part of many optical experimental and measurement systems, such as interferometers, also finding wide ...
. Rather, the received photon acts like a point-like particle since it is absorbed or emitted ''as a whole'' by arbitrarily small systems, including systems much smaller than its wavelength, such as an atomic nucleus (≈10−15 m across) or even the point-like electron. While many introductory texts treat photons using the mathematical techniques of non-relativistic quantum mechanics, this is in some ways an awkward oversimplification, as photons are by nature intrinsically relativistic. Because photons have zero rest mass, no wave function defined for a photon can have all the properties familiar from wave functions in non-relativistic quantum mechanics. In order to avoid these difficulties, physicists employ the second-quantized theory of photons described below, quantum electrodynamics, in which photons are quantized excitations of electromagnetic modes. Another difficulty is finding the proper analogue for the uncertainty principle, an idea frequently attributed to Heisenberg, who introduced the concept in analyzing a thought experiment involving an electron and a high-energy photon. However, Heisenberg did not give precise mathematical definitions of what the "uncertainty" in these measurements meant. The precise mathematical statement of the position–momentum uncertainty principle is due to Kennard,
Pauli Pauli is a surname and also a Finnish male given name (variant of Paul) and may refer to: * Arthur Pauli (born 1989), Austrian ski jumper * Barbara Pauli (1752 or 1753 - fl. 1781), Swedish fashion trader *Gabriele Pauli (born 1957), German politi ...
, and Weyl. The uncertainty principle applies to situations where an experimenter has a choice of measuring either one of two "canonically conjugate" quantities, like the position and the momentum of a particle. According to the uncertainty principle, no matter how the particle is prepared, it is not possible to make a precise prediction for both of the two alternative measurements: if the outcome of the position measurement is made more certain, the outcome of the momentum measurement becomes less so, and vice versa. A coherent state minimizes the overall uncertainty as far as quantum mechanics allows. Quantum optics makes use of coherent states for modes of the electromagnetic field. There is a tradeoff, reminiscent of the position–momentum uncertainty relation, between measurements of an electromagnetic wave's amplitude and its phase. This is sometimes informally expressed in terms of the uncertainty in the number of photons present in the electromagnetic wave, \Delta N, and the uncertainty in the phase of the wave, \Delta \phi. However, this cannot be an uncertainty relation of the Kennard–Pauli–Weyl type, since unlike position and momentum, the phase \phi cannot be represented by a Hermitian operator.


Bose–Einstein model of a photon gas

In 1924, Satyendra Nath Bose derived Planck's law of black-body radiation without using any electromagnetism, but rather by using a modification of coarse-grained counting of
phase space In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually ...
. Einstein showed that this modification is equivalent to assuming that photons are rigorously identical and that it implied a "mysterious non-local interaction", now understood as the requirement for a symmetric quantum mechanical state. This work led to the concept of coherent states and the development of the laser. In the same papers, Einstein extended Bose's formalism to material particles (bosons) and predicted that they would condense into their lowest quantum state at low enough temperatures; this Bose–Einstein condensation was observed experimentally in 1995. It was later used by
Lene Hau Lene Vestergaard Hau (; born November 13, 1959) is a Danish physicist and educator. She is the Mallinckrodt Professor of Physics and of Applied Physics at Harvard University. In 1999, she led a Harvard University team who, by use of a Bose–E ...
to slow, and then completely stop, light in 1999 and 2001. The modern view on this is that photons are, by virtue of their integer spin, bosons (as opposed to
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s with half-integer spin). By the spin-statistics theorem, all bosons obey Bose–Einstein statistics (whereas all fermions obey
Fermi–Dirac statistics Fermi–Dirac statistics (F–D statistics) is a type of quantum statistics that applies to the physics of a system consisting of many non-interacting, identical particles that obey the Pauli exclusion principle. A result is the Fermi–Dirac di ...
).


Stimulated and spontaneous emission

In 1916, Albert Einstein showed that Planck's radiation law could be derived from a semi-classical, statistical treatment of photons and atoms, which implies a link between the rates at which atoms emit and absorb photons. The condition follows from the assumption that functions of the emission and absorption of radiation by the atoms are independent of each other, and that thermal equilibrium is made by way of the radiation's interaction with the atoms. Consider a cavity in thermal equilibrium with all parts of itself and filled with electromagnetic radiation and that the atoms can emit and absorb that radiation. Thermal equilibrium requires that the energy density \rho(\nu) of photons with frequency \nu (which is proportional to their
number density The number density (symbol: ''n'' or ''ρ''N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number ...
) is, on average, constant in time; hence, the rate at which photons of any particular frequency are ''emitted'' must equal the rate at which they are ''absorbed''. Einstein began by postulating simple proportionality relations for the different reaction rates involved. In his model, the rate R_ for a system to ''absorb'' a photon of frequency \nu and transition from a lower energy E_ to a higher energy E_ is proportional to the number N_ of atoms with energy E_ and to the energy density \rho(\nu) of ambient photons of that frequency, : R_=N_ B_ \rho(\nu) \! where B_ is the rate constant for absorption. For the reverse process, there are two possibilities: spontaneous emission of a photon, or the emission of a photon initiated by the interaction of the atom with a passing photon and the return of the atom to the lower-energy state. Following Einstein's approach, the corresponding rate R_ for the emission of photons of frequency \nu and transition from a higher energy E_ to a lower energy E_ is : R_=N_ A_ + N_ B_ \rho(\nu) \! where A_ is the rate constant for emitting a photon spontaneously, and B_ is the rate constant for emissions in response to ambient photons ( induced or stimulated emission). In thermodynamic equilibrium, the number of atoms in state i and those in state j must, on average, be constant; hence, the rates R_ and R_ must be equal. Also, by arguments analogous to the derivation of
Boltzmann statistics Ludwig Eduard Boltzmann (; 20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of thermodyn ...
, the ratio of N_ and N_ is g_i/g_j\exp, where g_i and g_j are the
degeneracy Degeneracy, degenerate, or degeneration may refer to: Arts and entertainment * ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed * Degenerate art, a term adopted in the 1920s by the Nazi Party in Germany to descri ...
of the state i and that of j, respectively, E_i and E_j their energies, k the Boltzmann constant and T the system's temperature. From this, it is readily derived that g_iB_=g_jB_ and : A_=\frac B_. The A_ and B_ are collectively known as the ''Einstein coefficients''. Einstein could not fully justify his rate equations, but claimed that it should be possible to calculate the coefficients A_, B_ and B_ once physicists had obtained "mechanics and electrodynamics modified to accommodate the quantum hypothesis". Not long thereafter, in 1926, Paul Dirac derived the B_ rate constants by using a semiclassical approach, and, in 1927, succeeded in deriving ''all'' the rate constants from first principles within the framework of quantum theory. Dirac's work was the foundation of quantum electrodynamics, i.e., the quantization of the electromagnetic field itself. Dirac's approach is also called ''second quantization'' or
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
; earlier quantum mechanical treatments only treat material particles as quantum mechanical, not the electromagnetic field. Einstein was troubled by the fact that his theory seemed incomplete, since it did not determine the ''direction'' of a spontaneously emitted photon. A probabilistic nature of light-particle motion was first considered by
Newton Newton most commonly refers to: * Isaac Newton (1642–1726/1727), English scientist * Newton (unit), SI unit of force named after Isaac Newton Newton may also refer to: Arts and entertainment * ''Newton'' (film), a 2017 Indian film * Newton ( ...
in his treatment of
birefringence Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefring ...
and, more generally, of the splitting of light beams at interfaces into a transmitted beam and a reflected beam. Newton hypothesized that hidden variables in the light particle determined which of the two paths a single photon would take. Similarly, Einstein hoped for a more complete theory that would leave nothing to chance, beginning his separation from quantum mechanics. Ironically,
Max Born Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a n ...
's probabilistic interpretation of the wave function was inspired by Einstein's later work searching for a more complete theory. Specifically, Born claimed to have been inspired by Einstein's never-published attempts to develop a "ghost-field" theory, in which point-like photons are guided probabilistically by ghost fields that follow Maxwell's equations.


Quantum field theory


Quantization of the electromagnetic field

In 1910, Peter Debye derived Planck's law of black-body radiation from a relatively simple assumption. He decomposed the electromagnetic field in a cavity into its
Fourier modes A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p ...
, and assumed that the energy in any mode was an integer multiple of h\nu, where \nu is the frequency of the electromagnetic mode. Planck's law of black-body radiation follows immediately as a geometric sum. However, Debye's approach failed to give the correct formula for the energy fluctuations of black-body radiation, which were derived by Einstein in 1909. In 1925,
Born Born may refer to: * Childbirth * Born (surname), a surname (see also for a list of people with the name) * ''Born'' (comics), a comic book limited series Places * Born, Belgium, a village in the German-speaking Community of Belgium * Born, Luxe ...
, Heisenberg and Jordan reinterpreted Debye's concept in a key way. As may be shown classically, the
Fourier modes A Fourier series () is a summation of harmonically related sinusoidal functions, also known as components or harmonics. The result of the summation is a periodic function whose functional form is determined by the choices of cycle length (or ''p ...
of the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
—a complete set of electromagnetic plane waves indexed by their wave vector ''k'' and polarization state—are equivalent to a set of uncoupled simple harmonic oscillators. Treated quantum mechanically, the energy levels of such oscillators are known to be E=nh\nu, where \nu is the oscillator frequency. The key new step was to identify an electromagnetic mode with energy E=nh\nu as a state with n photons, each of energy h\nu. This approach gives the correct energy fluctuation formula. Dirac took this one step further. He treated the interaction between a charge and an electromagnetic field as a small perturbation that induces transitions in the photon states, changing the numbers of photons in the modes, while conserving energy and momentum overall. Dirac was able to derive Einstein's A_ and B_ coefficients from first principles, and showed that the Bose–Einstein statistics of photons is a natural consequence of quantizing the electromagnetic field correctly (Bose's reasoning went in the opposite direction; he derived Planck's law of black-body radiation by ''assuming'' B–E statistics). In Dirac's time, it was not yet known that all bosons, including photons, must obey Bose–Einstein statistics. Dirac's second-order perturbation theory can involve virtual photons, transient intermediate states of the electromagnetic field; the static electric and
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
interactions are mediated by such virtual photons. In such quantum field theories, the probability amplitude of observable events is calculated by summing over ''all'' possible intermediate steps, even ones that are unphysical; hence, virtual photons are not constrained to satisfy E=pc, and may have extra
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
states; depending on the gauge used, virtual photons may have three or four polarization states, instead of the two states of real photons. Although these transient virtual photons can never be observed, they contribute measurably to the probabilities of observable events. Indeed, such second-order and higher-order perturbation calculations can give apparently infinite contributions to the sum. Such unphysical results are corrected for using the technique of renormalization. Other virtual particles may contribute to the summation as well; for example, two photons may interact indirectly through virtual electron
positron The positron or antielectron is the antiparticle or the antimatter counterpart of the electron. It has an electric charge of +1 '' e'', a spin of 1/2 (the same as the electron), and the same mass as an electron. When a positron collides ...
pairs. Such photon–photon scattering (see two-photon physics), as well as electron–photon scattering, is meant to be one of the modes of operations of the planned particle accelerator, the
International Linear Collider The International Linear Collider (ILC) is a proposed linear particle accelerator. It is planned to have a collision energy of 500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV). Although early proposed ...
. In
modern physics Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity and general ...
notation, the quantum state of the electromagnetic field is written as a Fock state, a tensor product of the states for each electromagnetic mode :, n_\rangle\otimes, n_\rangle\otimes\dots\otimes, n_\rangle\dots where , n_\rangle represents the state in which \, n_ photons are in the mode k_i. In this notation, the creation of a new photon in mode k_i (e.g., emitted from an atomic transition) is written as , n_\rangle \rightarrow, n_+1\rangle. This notation merely expresses the concept of Born, Heisenberg and Jordan described above, and does not add any physics.


As a gauge boson

The electromagnetic field can be understood as a gauge field, i.e., as a field that results from requiring that a gauge symmetry holds independently at every position in spacetime. For the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
, this gauge symmetry is the
Abelian Abelian may refer to: Mathematics Group theory * Abelian group, a group in which the binary operation is commutative ** Category of abelian groups (Ab), has abelian groups as objects and group homomorphisms as morphisms * Metabelian group, a grou ...
U(1) symmetry of complex numbers of absolute value 1, which reflects the ability to vary the phase of a complex field without affecting observables or real valued functions made from it, such as the energy or the
Lagrangian Lagrangian may refer to: Mathematics * Lagrangian function, used to solve constrained minimization problems in optimization theory; see Lagrange multiplier ** Lagrangian relaxation, the method of approximating a difficult constrained problem with ...
. The quanta of an Abelian gauge field must be massless, uncharged bosons, as long as the symmetry is not broken; hence, the photon is predicted to be massless, and to have zero electric charge and integer spin. The particular form of the electromagnetic interaction specifies that the photon must have
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
±1; thus, its helicity must be \pm \hbar. These two spin components correspond to the classical concepts of right-handed and left-handed circularly polarized light. However, the transient virtual photons of quantum electrodynamics may also adopt unphysical polarization states. In the prevailing
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
of physics, the photon is one of four gauge bosons in the electroweak interaction; the other three are denoted W+, W and Z0 and are responsible for the weak interaction. Unlike the photon, these gauge bosons have mass, owing to a mechanism that breaks their SU(2) gauge symmetry. The unification of the photon with W and Z gauge bosons in the electroweak interaction was accomplished by Sheldon Glashow, Abdus Salam and Steven Weinberg, for which they were awarded the 1979 Nobel Prize in physics.Sheldon Glashow Nobel lecture
delivered 8 December 1979.

delivered 8 December 1979.

delivered 8 December 1979.
Physicists continue to hypothesize grand unified theories that connect these four gauge bosons with the eight
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
gauge bosons of
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
; however, key predictions of these theories, such as proton decay, have not been observed experimentally.


Hadronic properties

Measurements of the interaction between energetic photons and hadrons show that the interaction is much more intense than expected by the interaction of merely photons with the hadron's electric charge. Furthermore, the interaction of energetic photons with protons is similar to the interaction of photons with neutrons in spite of the fact that the electric charge structures of protons and neutrons are substantially different. A theory called Vector Meson Dominance (VMD) was developed to explain this effect. According to VMD, the photon is a superposition of the pure electromagnetic photon which interacts only with electric charges and vector mesons. However, if experimentally probed at very short distances, the intrinsic structure of the photon is recognized as a flux of quark and gluon components, quasi-free according to asymptotic freedom in QCD and described by the photon structure function. A comprehensive comparison of data with theoretical predictions was presented in a review in 2000.


Contributions to the mass of a system

The energy of a system that emits a photon is ''decreased'' by the energy E of the photon as measured in the rest frame of the emitting system, which may result in a reduction in mass in the amount /. Similarly, the mass of a system that absorbs a photon is ''increased'' by a corresponding amount. As an application, the energy balance of nuclear reactions involving photons is commonly written in terms of the masses of the nuclei involved, and terms of the form / for the gamma photons (and for other relevant energies, such as the recoil energy of nuclei). This concept is applied in key predictions of quantum electrodynamics (QED, see above). In that theory, the mass of electrons (or, more generally, leptons) is modified by including the mass contributions of virtual photons, in a technique known as renormalization. Such " radiative corrections" contribute to a number of predictions of QED, such as the
magnetic dipole moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electromagnets ...
of
lepton In particle physics, a lepton is an elementary particle of half-integer spin ( spin ) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutr ...
s, the Lamb shift, and the
hyperfine structure In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucl ...
of bound lepton pairs, such as muonium and positronium. Since photons contribute to the
stress–energy tensor The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ...
, they exert a gravitational attraction on other objects, according to the theory of general relativity. Conversely, photons are themselves affected by gravity; their normally straight trajectories may be bent by warped spacetime, as in gravitational lensing, and their frequencies may be lowered by moving to a higher gravitational potential, as in the Pound–Rebka experiment. However, these effects are not specific to photons; exactly the same effects would be predicted for classical
electromagnetic waves In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) lig ...
.


In matter

Light that travels through transparent matter does so at a lower speed than ''c'', the speed of light in vacuum. The factor by which the speed is decreased is called the refractive index of the material. In a classical wave picture, the slowing can be explained by the light inducing electric polarization in the matter, the polarized matter radiating new light, and that new light interfering with the original light wave to form a delayed wave. In a particle picture, the slowing can instead be described as a blending of the photon with quantum excitations of the matter to produce
quasi-particle In physics, quasiparticles and collective excitations are closely related emergent phenomena arising when a microscopically complicated system such as a solid behaves as if it contained different weakly interacting particles in vacuum. For exa ...
s known as polariton (see this list for some other quasi-particles); this polariton has a nonzero effective mass, which means that it cannot travel at ''c''. Light of different frequencies may travel through matter at different speeds; this is called dispersion (not to be confused with scattering). In some cases, it can result in extremely slow speeds of light in matter. The effects of photon interactions with other quasi-particles may be observed directly in Raman scattering and
Brillouin scattering Brillouin scattering (also known as Brillouin light scattering or BLS), named after Léon Brillouin, refers to the interaction of light with the material waves in a medium (e.g. electrostriction and magnetostriction). It is mediated by the refr ...
. Photons can be scattered by matter. For example, photons engage in so many collisions on the way from the core of the Sun that radiant energy can take about a million years to reach the surface; however, once in open space, a photon takes only 8.3 minutes to reach Earth. Photons can also be absorbed by nuclei, atoms or molecules, provoking transitions between their energy levels. A classic example is the molecular transition of retinal (C20H28O), which is responsible for vision, as discovered in 1958 by Nobel laureate
biochemist Biochemists are scientists who are trained in biochemistry. They study chemical processes and chemical transformations in living organisms. Biochemists study DNA, proteins and Cell (biology), cell parts. The word "biochemist" is a portmanteau of ...
George Wald George Wald (November 18, 1906 – April 12, 1997) was an American scientist who studied pigments in the retina. He won a share of the 1967 Nobel Prize in Physiology or Medicine with Haldan Keffer Hartline and Ragnar Granit. In 1970, Wald pred ...
and co-workers. The absorption provokes a cis–trans isomerization that, in combination with other such transitions, is transduced into nerve impulses. The absorption of photons can even break chemical bonds, as in the
photodissociation Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule. ...
of chlorine; this is the subject of photochemistry.


Technological applications

Photons have many applications in technology. These examples are chosen to illustrate applications of photons ''per se'', rather than general optical devices such as lenses, etc. that could operate under a classical theory of light. The laser is an extremely important application and is discussed above under
stimulated emission Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
. Individual photons can be detected by several methods. The classic photomultiplier tube exploits the photoelectric effect: a photon of sufficient energy strikes a metal plate and knocks free an electron, initiating an ever-amplifying avalanche of electrons. Semiconductor charge-coupled device chips use a similar effect: an incident photon generates a charge on a microscopic capacitor that can be detected. Other detectors such as
Geiger counter A Geiger counter (also known as a Geiger–Müller counter) is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental ph ...
s use the ability of photons to ionize gas molecules contained in the device, causing a detectable change of conductivity of the gas. Planck's energy formula E=h\nu is often used by engineers and chemists in design, both to compute the change in energy resulting from a photon absorption and to determine the frequency of the light emitted from a given photon emission. For example, the
emission spectrum The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an electron making a atomic electron transition, transition from a high energy state to a lower energy st ...
of a
gas-discharge lamp Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma. Typically, such lamps use a noble gas (argon, neon, krypton, and xenon) or a mixture of thes ...
can be altered by filling it with (mixtures of) gases with different electronic energy level configurations. Under some conditions, an energy transition can be excited by "two" photons that individually would be insufficient. This allows for higher resolution microscopy, because the sample absorbs energy only in the spectrum where two beams of different colors overlap significantly, which can be made much smaller than the excitation volume of a single beam (see two-photon excitation microscopy). Moreover, these photons cause less damage to the sample, since they are of lower energy. In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of
fluorescence resonance energy transfer Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
, a technique that is used in molecular biology to study the interaction of suitable proteins. Several different kinds of hardware random number generators involve the detection of single photons. In one example, for each bit in the random sequence that is to be produced, a photon is sent to a beam-splitter. In such a situation, there are two possible outcomes of equal probability. The actual outcome is used to determine whether the next bit in the sequence is "0" or "1".


Quantum optics and computation

Much research has been devoted to applications of photons in the field of quantum optics. Photons seem well-suited to be elements of an extremely fast
quantum computer Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though ...
, and the quantum entanglement of photons is a focus of research. Nonlinear optical processes are another active research area, with topics such as two-photon absorption, self-phase modulation, modulational instability and optical parametric oscillators. However, such processes generally do not require the assumption of photons ''per se''; they may often be modeled by treating atoms as nonlinear oscillators. The nonlinear process of spontaneous parametric down conversion is often used to produce single-photon states. Finally, photons are essential in some aspects of
optical communication Optical communication, also known as optical telecommunication, is communication at a distance using light to carry information. It can be performed visually or by using electronic devices. The earliest basic forms of optical communication date b ...
, especially for quantum cryptography. Introductory-level material on the various sub-fields of quantum optics can be found in Two-photon physics studies interactions between photons, which are rare. In 2018, MIT researchers announced the discovery of bound photon triplets, which may involve polaritons.


See also


Notes


References


Further reading

;By date of publication: * * * * * * * ** ** ** ** ** ** * * ;Education with single photons: * *


External links

* * * {{Authority control Bosons Gauge bosons Elementary particles Electromagnetism Optics Quantum electrodynamics Photons Force carriers Subatomic particles with spin 1