Perrin Pseudoprime
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Perrin numbers are defined by the
recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
: for , with initial values :. The sequence of Perrin numbers starts with : 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, ... The number of different
maximal independent set In graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maxim ...
s in an -vertex
cycle graph In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called ...
is counted by the th Perrin number for .


History

This sequence was mentioned implicitly by
Édouard Lucas __NOTOC__ François Édouard Anatole Lucas (; 4 April 1842 – 3 October 1891) was a French mathematician. Lucas is known for his study of the Fibonacci sequence. The related Lucas sequences and Lucas numbers are named after him. Biography Lucas ...
(1876). In 1899, the same sequence was mentioned explicitly by François Olivier Raoul Perrin. The most extensive treatment of this sequence was given by Adams and Shanks (1982).


Properties


Generating function

The
generating function In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary seri ...
of the Perrin sequence is :G(P(n);x)=\frac.


Matrix formula

: \begin 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end^n \begin 3 \\ 0 \\ 2 \end = \begin P\left(n\right) \\ P\left(n+1\right) \\ P\left(n+2\right) \end


Binet-like formula

The Perrin sequence numbers can be written in terms of powers of the roots of the equation : x^3 -x -1 = 0. This equation has 3 roots; one real root ''p'' (known as the
plastic number In mathematics, the plastic number (also known as the plastic constant, the plastic ratio, the minimal Pisot number, the platin number, Siegel's number or, in French, ) is a mathematical constant which is the unique real solution of the cubic ...
) and two complex conjugate roots ''q'' and ''r''. Given these three roots, the Perrin sequence analogue of the
Lucas sequence In mathematics, the Lucas sequences U_n(P,Q) and V_n(P, Q) are certain constant-recursive integer sequences that satisfy the recurrence relation : x_n = P \cdot x_ - Q \cdot x_ where P and Q are fixed integers. Any sequence satisfying this recu ...
Binet formula is :P\left(n\right) = + + . Since the magnitudes of the complex roots ''q'' and ''r'' are both less than 1, the powers of these roots approach 0 for large ''n''. For large ''n'' the formula reduces to :P\left(n\right) \approx This formula can be used to quickly calculate values of the Perrin sequence for large n. The ratio of successive terms in the Perrin sequence approaches ''p'', a.k.a. the
plastic number In mathematics, the plastic number (also known as the plastic constant, the plastic ratio, the minimal Pisot number, the platin number, Siegel's number or, in French, ) is a mathematical constant which is the unique real solution of the cubic ...
, which has a value of approximately 1.324718. This constant bears the same relationship to the Perrin sequence as the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( ...
does to the
Lucas sequence In mathematics, the Lucas sequences U_n(P,Q) and V_n(P, Q) are certain constant-recursive integer sequences that satisfy the recurrence relation : x_n = P \cdot x_ - Q \cdot x_ where P and Q are fixed integers. Any sequence satisfying this recu ...
. Similar connections exist also between ''p'' and the
Padovan sequence In number theory, the Padovan sequence is the sequence of integers ''P''(''n'') defined. by the initial values :P(0)=P(1)=P(2)=1, and the recurrence relation :P(n)=P(n-2)+P(n-3). The first few values of ''P''(''n'') are :1, 1, 1, 2, 2, 3, 4, 5 ...
, between the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0, where the Greek letter phi ( ...
and Fibonacci numbers, and between the
silver ratio In mathematics, two quantities are in the silver ratio (or silver mean) if the ratio of the smaller of those two quantities to the larger quantity is the same as the ratio of the larger quantity to the sum of the smaller quantity and twice t ...
and
Pell number In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins , , , , an ...
s.


Multiplication formula

From the Binet formula, we can obtain a formula for ''G''(''kn'') in terms of ''G''(''n''−1), ''G''(''n'') and ''G''(''n''+1); we know : \begin G(n-1) & = &p^p^n + &q^q^n +& r^ r^n\\ G(n) & =& p^n+&q^n+&r^n\\ G(n+1) &=& pp^n +& qq^n +& rr^n\end which gives us three linear equations with coefficients over the
splitting field In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial ''splits'', i.e., decomposes into linear factors. Definition A splitting field of a poly ...
of x^3 -x -1 ; by inverting a matrix we can solve for p^n, q^n, r^n and then we can raise them to the ''k''th power and compute the sum. Example
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma is found beneath the surface of the Earth, and evidence of magmatism has also been discovered on other terrestrial planets and some natural sa ...
code: P<x> := PolynomialRing(Rationals()); S<t> := SplittingField(x^3-x-1); P2<y> := PolynomialRing(S); p,q,r := Explode([r[1] : r in Roots(y^3-y-1)]); Mi:=Matrix([[1/p,1/q,1/r],[1,1,1],[p,q,r]])^(-1); T<u,v,w> := PolynomialRing(S,3); v1 := ChangeRing(Mi,T) *Matrix([[u],[v],[w]]); [p^i*v1[1,1]^3 + q^i*v1[2,1]^3 + r^i*v1[3,1]^3 : i in [-1..1]]; with the result that, if we have u = G(n-1), v = G(n), w = G(n+1), then : \begin 23G(2n-1) &=& 4u^2 + 3v^2 + 9w^2 + 18uv - 12uw - 4vw \\ 23G(2n) &=& - 6u^2 + 7v^2 - 2w^2 - 4uv + 18uw + 6vw\\ 23G(2n+1) &=& 9u^2 + v^2 + 3w^2 + 6uv - 4uw + 14vw \\ 23G(3n-1)& = &\left(-4u^3 + 2v^3 -w^3 + 9(uv^2+vw^2+wu^2) + 3v^2w+6uvw\right)\\ 23G(3n)& = &\left(3u^3 + 2v^3 + 3w^3 - 3(uv^2 + uw^2 + vw^2 + vu^2) + 6v^2w + 18uvw\right) \\ 23G(3n+1)& = &\left(v^3-w^3+6uv^2+9uw^2+6vw^2+9vu^2-3wu^2+6wv^2-6uvw\right) \end The number 23 here arises from the discriminant of the defining polynomial of the sequence. This allows computation of the nth Perrin number using integer arithmetic in O(\log n) multiplies.


Primes and divisibility


Perrin pseudoprimes

It has been proven that for all primes ''p'', ''p'' divides ''P''(''p''). However, the converse is not true: for some
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
s ''n'', ''n'' may still divide ''P''(''n''). If ''n'' has this property, it is called a "Perrin
pseudoprime A pseudoprime is a probable prime (an integer that shares a property common to all prime numbers) that is not actually prime. Pseudoprimes are classified according to which property of primes they satisfy. Some sources use the term pseudoprime to ...
". The first few Perrin pseudoprimes are :271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291, 102690901, 130944133, 196075949, 214038533, 517697641, 545670533, 801123451, 855073301, 903136901, 970355431, ... The question of the existence of Perrin pseudoprimes was considered by Perrin himself, but it was not known whether they existed until Adams and Shanks (1982) discovered the smallest one, 271441 = 5212; the next-smallest is 904631 = 7 x 13 x 9941. There are seventeen of them less than a billion; Jon Grantham has proved that there are infinitely many Perrin pseudoprimes. Adams and Shanks (1982) noted that primes also meet the condition that ''P''(''-p'') = ''-1'' mod ''p''. Composites where both properties hold are called "restricted Perrin pseudoprimes" . Further conditions can be applied using the six element signature of ''n'' which must be one of three forms (e.g. and ). While Perrin pseudoprimes are rare, they have significant overlap with
Fermat pseudoprime In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem. Definition Fermat's little theorem states that if ''p'' is prime and ''a'' is coprime to ''p'', then ''a'p''â ...
s. This contrasts with the
Lucas pseudoprime Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence. Baillie-Wagstaff-Lucas pseudoprimes Baill ...
s which are anti-correlated. The latter condition is exploited to yield the popular, efficient, and more effective BPSW test which has no known pseudoprimes, and the smallest is known to be greater than 264.


Perrin primes

A Perrin prime is a Perrin number that is
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
. The first few Perrin primes are: :2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797, ... For these Perrin primes, the index of is :2, 3, 4, 5, 6, 7, 10, 12, 20, 21, 24, 34, 38, 75, 122, 166, 236, 355, 356, 930, 1041+1, 1214, 1461, 1622, 4430, 5802, 9092, ... Generating P(n) where n is a negative integer yields a similar property regarding primality: if n is a negative, then P(n) is prime when P(n) mod -n = -n - 1. The following sequence represents P(n) for all n that are negative integers: :-1, 1, 2, -3, 4, -2, -1, 5, -7, 6, -1, -6, 12, -13, 7, 5, -18, 25, -20, 2, 23, -43, 45, -22, -21, 66, -88, 67, -1, ...


Notes


References

* * *


Further reading

* * *


External links


Zentrum für Hirnforschung Institut für Medizinische Kybernetik und Artificial Intelligence
* * *—Perrin-like sequence

{{Classes of natural numbers Integer sequences Recurrence relations