Fermat Pseudoprime
   HOME
*





Fermat Pseudoprime
In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem. Definition Fermat's little theorem states that if ''p'' is prime and ''a'' is coprime to ''p'', then ''a''''p''−1 − 1 is divisible by ''p''. For an integer ''a'' > 1, if a composite integer ''x'' divides ''a''''x''−1 − 1, then ''x'' is called a Fermat pseudoprime to base ''a''. In other words, a composite integer is a Fermat pseudoprime to base ''a'' if it successfully passes the Fermat primality test for the base ''a''. The false statement that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2. Pseudoprimes to base 2 are sometimes called Sarrus numbers, afte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of Complex analysis, analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baillie–PSW Primality Test
The Baillie–PSW primality test is a probabilistic primality testing algorithm that determines whether a number is composite or is a probable prime. It is named after Robert Baillie, Carl Pomerance, John Selfridge, and Samuel Wagstaff. The Baillie–PSW test is a combination of a strong Fermat probable prime test to base 2 and a strong Lucas probable prime test. The Fermat and Lucas test each have their own list of pseudoprimes, that is, composite numbers that pass the test. For example, the first ten strong pseudoprimes to base 2 are : 2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, and 52633 . The first ten strong Lucas pseudoprimes (with Lucas parameters (''P'', ''Q'') defined by Selfridge's Method A) are : 5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, and 58519 . There is no known overlap between these lists of strong Fermat pseudoprimes and strong Lucas pseudoprimes, and there is even evidence that the numbers in these lists tend to be different kin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solovay–Strassen Primality Test
The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 (see Theorem E in the paper). This test has been largely superseded by the Baillie–PSW primality test and the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem. The Solovay–Strassen test is essentially an Euler–Jacobi pseudoprime test. Concepts Euler proved that for any odd prime number ''p'' and any integer ''a'', :a^ \equiv \left(\frac\right) \pmod p where \left(\tfrac\right) is the Legendre symbol. The Jacobi symbol is a generalisation of the Legendre symbol to \left(\tfrac\right), where ''n'' can be any odd integer. The Jacobi symbol can be computed in time O((log ''n'')²) using Jacobi's generalization of the law of quadratic reciprocity. G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Randomized Algorithm
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables. One has to distinguish between algorithms that use the random input so that they always terminate with the correct answer, but where the expected running time is finite (Las Vegas algorithms, for example Quicksort), and algorithms which have a chance of producing an incorrect result (Monte Carlo algorithms, for example the Monte Carlo algorithm for the MFAS problem) or fail to produce a result either by signaling a failure or failing to terminate. In some cases, probabilistic algorithms are the only practical means of solving a problem. In common practice, randomized algor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Euler–Jacobi Pseudoprime
In number theory, an odd integer ''n'' is called an Euler–Jacobi probable prime (or, more commonly, an Euler probable prime) to base ''a'', if ''a'' and ''n'' are coprime, and :a^ \equiv \left(\frac\right)\pmod where \left(\frac\right) is the Jacobi symbol. If ''n'' is an odd composite integer that satisfies the above congruence, then ''n'' is called an Euler–Jacobi pseudoprime (or, more commonly, an Euler pseudoprime) to base ''a''. Properties The motivation for this definition is the fact that all prime numbers ''n'' satisfy the above equation, as explained in the Euler's criterion article. The equation can be tested rather quickly, which can be used for probabilistic primality testing. These tests are over twice as strong as tests based on Fermat's little theorem. Every Euler–Jacobi pseudoprime is also a Fermat pseudoprime and an Euler pseudoprime. There are no numbers which are Euler–Jacobi pseudoprimes to all bases as Carmichael numbers are. Solovay and Stra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiprime
In mathematics, a semiprime is a natural number that is the product of exactly two prime numbers. The two primes in the product may equal each other, so the semiprimes include the squares of prime numbers. Because there are infinitely many prime numbers, there are also infinitely many semiprimes. Semiprimes are also called biprimes. Examples and variations The semiprimes less than 100 are: Semiprimes that are not square numbers are called discrete, distinct, or squarefree semiprimes: The semiprimes are the case k=2 of the k-almost primes, numbers with exactly k prime factors. However some sources use "semiprime" to refer to a larger set of numbers, the numbers with at most two prime factors (including unit (1), primes, and semiprimes). These are: Formula for number of semiprimes A semiprime counting formula was discovered by E. Noel and G. Panos in 2005. Let \pi_2(n) denote the number of semiprimes less than or equal to n. Then \pi_2(n) = \sum_^ pi(n/p_k) - k + 1 /math> where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Squarefree Number
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Totient
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the RSA en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Even Number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quotient
In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a division (in the case of Euclidean division), or as a fraction or a ratio (in the case of proper division). For example, when dividing 20 (the ''dividend'') by 3 (the ''divisor''), the ''quotient'' is "6 with a remainder of 2" in the Euclidean division sense, and 6\tfrac in the proper division sense. In the second sense, a quotient is simply the ratio of a dividend to its divisor. Notation The quotient is most frequently encountered as two numbers, or two variables, divided by a horizontal line. The words "dividend" and "divisor" refer to each individual part, while the word "quotient" refers to the whole. \dfrac \quad \begin & \leftarrow \text \\ & \leftarrow \text \end \Biggr \} \leftarrow \text Integer part definition The quo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]