Euler–Jacobi Pseudoprime
In number theory, an odd integer ''n'' is called an Euler–Jacobi probable prime (or, more commonly, an Euler probable prime) to base ''a'', if ''a'' and ''n'' are coprime, and :a^ \equiv \left(\frac\right)\pmod where \left(\frac\right) is the Jacobi symbol. If ''n'' is an odd composite integer that satisfies the above congruence, then ''n'' is called an Euler–Jacobi pseudoprime (or, more commonly, an Euler pseudoprime) to base ''a''. Properties The motivation for this definition is the fact that all prime numbers ''n'' satisfy the above equation, as explained in the Euler's criterion article. The equation can be tested rather quickly, which can be used for probabilistic primality testing. These tests are over twice as strong as tests based on Fermat's little theorem. Every Euler–Jacobi pseudoprime is also a Fermat pseudoprime and an Euler pseudoprime. There are no numbers which are Euler–Jacobi pseudoprimes to all bases as Carmichael numbers are. Solovay and Stras ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Number Theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."German original: "Die Mathematik ist die Königin der Wissenschaften, und die Arithmetik ist die Königin der Mathematik." Number theorists study prime numbers as well as the properties of mathematical objects made out of integers (for example, rational numbers) or defined as generalizations of the integers (for example, algebraic integers). Integers can be considered either in themselves or as solutions to equations (Diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (for example, the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic object ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat Pseudoprime
In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem. Definition Fermat's little theorem states that if ''p'' is prime and ''a'' is coprime to ''p'', then ''a''''p''−1 − 1 is divisible by ''p''. For an integer ''a'' > 1, if a composite integer ''x'' divides ''a''''x''−1 − 1, then ''x'' is called a Fermat pseudoprime to base ''a''. In other words, a composite integer is a Fermat pseudoprime to base ''a'' if it successfully passes the Fermat primality test for the base ''a''. The false statement that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2. Pseudoprimes to base 2 are sometimes called Sarrus numbers, afte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carl Pomerance
Carl Bernard Pomerance (born 1944 in Joplin, Missouri) is an American number theorist. He attended college at Brown University and later received his Ph.D. from Harvard University in 1972 with a dissertation proving that any odd perfect number has at least seven distinct prime factors. He joined the faculty at the University of Georgia, becoming full professor in 1982. He subsequently worked at Lucent Technologies for a number of years, and then became a distinguished Professor at Dartmouth College. Contributions He has over 120 publications, including co-authorship with Richard Crandall of ''Prime numbers: a computational perspective'' (Springer-Verlag, first edition 2001, second edition 2005), and with Paul Erdős. He is the inventor of one of the integer factorization methods, the quadratic sieve algorithm, which was used in 1994 for the factorization of RSA-129. He is also one of the discoverers of the Adleman–Pomerance–Rumely primality test. Awards and honors He has w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Samuel S
Samuel ''Šəmūʾēl'', Tiberian: ''Šămūʾēl''; ar, شموئيل or صموئيل '; el, Σαμουήλ ''Samouḗl''; la, Samūēl is a figure who, in the narratives of the Hebrew Bible, plays a key role in the transition from the biblical judges to the United Kingdom of Israel under Saul, and again in the monarchy's transition from Saul to David. He is venerated as a prophet in Judaism, Christianity, and Islam. In addition to his role in the Hebrew scriptures, Samuel is mentioned in Jewish rabbinical literature, in the Christian New Testament, and in the second chapter of the Quran (although Islamic texts do not mention him by name). He is also treated in the fifth through seventh books of ''Antiquities of the Jews'', written by the Jewish scholar Josephus in the first century. He is first called "the Seer" in 1 Samuel 9:9. Biblical account Family Samuel's mother was Hannah and his father was Elkanah. Elkanah lived at Ramathaim in the district of Zuph. His gene ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John L
John Lasarus Williams (29 October 1924 – 15 June 2004), known as John L, was a Welsh nationalist activist. Williams was born in Llangoed on Anglesey, but lived most of his life in nearby Llanfairpwllgwyngyll. In his youth, he was a keen footballer, and he also worked as a teacher. His activism started when he campaigned against the refusal of Brewer Spinks, an employer in Blaenau Ffestiniog, to permit his staff to speak Welsh. This inspired him to become a founder of Undeb y Gymraeg Fyw, and through this organisation was the main organiser of ''Sioe Gymraeg y Borth'' (the Welsh show for Menai Bridge using the colloquial form of its Welsh name).Colli John L Williams , '' BBC Cymru'', 15 June 2004 Williams also join ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Volker Strassen
Volker Strassen (born April 29, 1936) is a German mathematician, a professor emeritus in the department of mathematics and statistics at the University of Konstanz. For important contributions to the analysis of algorithms he has received many awards, including the Cantor medal, the Konrad Zuse Medal, the Paris Kanellakis Award for work on randomized primality testing, the Knuth Prize for "seminal and influential contributions to the design and analysis of efficient algorithms." Biography Strassen was born on April 29, 1936, in Düsseldorf-Gerresheim.. After studying music, philosophy, physics, and mathematics at several German universities, he received his Ph.D. in mathematics in 1962 from the University of Göttingen under the supervision of . He then took a position in the department of statistics at the University of California, Berkeley while performing his habilitation at the University of Erlangen-Nuremberg, where Jacobs had since moved. In 1968, Strassen moved to the I ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robert M
The name Robert is an ancient Germanic given name, from Proto-Germanic "fame" and "bright" (''Hrōþiberhtaz''). Compare Old Dutch ''Robrecht'' and Old High German ''Hrodebert'' (a compound of '' Hruod'' ( non, Hróðr) "fame, glory, honour, praise, renown" and ''berht'' "bright, light, shining"). It is the second most frequently used given name of ancient Germanic origin. It is also in use as a surname. Another commonly used form of the name is Rupert. After becoming widely used in Continental Europe it entered England in its Old French form ''Robert'', where an Old English cognate form (''Hrēodbēorht'', ''Hrodberht'', ''Hrēodbēorð'', ''Hrœdbœrð'', ''Hrœdberð'', ''Hrōðberχtŕ'') had existed before the Norman Conquest. The feminine version is Roberta. The Italian, Portuguese, and Spanish form is Roberto. Robert is also a common name in many Germanic languages, including English, German, Dutch, Norwegian, Swedish, Scots, Danish, and Icelandic. It can be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carmichael Number
In number theory, a Carmichael number is a composite number n, which in modular arithmetic satisfies the congruence relation: :b^n\equiv b\pmod for all integers b. The relation may also be expressed in the form: :b^\equiv 1\pmod. for all integers b which are relatively prime to n. Carmichael numbers are named after American mathematician Robert Carmichael, the term having been introduced by Nicolaas Beeger in 1950 (Øystein Ore had referred to them in 1948 as numbers with the "Fermat property", or "''F'' numbers" for short). They are infinite in number. They constitute the comparatively rare instances where the strict converse of Fermat's Little Theorem does not hold. This fact precludes the use of that theorem as an absolute test of primality. The Carmichael numbers form the subset ''K''1 of the Knödel numbers. Overview Fermat's little theorem states that if ''p'' is a prime number, then for any integer ''b'', the number ''b'' − ''b'' is an integer multipl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Pseudoprime
In arithmetic, an odd composite integer ''n'' is called an Euler pseudoprime to base ''a'', if ''a'' and ''n'' are coprime, and : a^ \equiv \pm 1\pmod (where ''mod'' refers to the modulo operation). The motivation for this definition is the fact that all prime numbers ''p'' satisfy the above equation which can be deduced from Fermat's little theorem. Fermat's theorem asserts that if ''p'' is prime, and coprime to ''a'', then ''a''''p''−1 ≡ 1 (mod ''p''). Suppose that ''p''>2 is prime, then ''p'' can be expressed as 2''q'' + 1 where ''q'' is an integer. Thus, ''a''(2''q''+1) − 1 ≡ 1 (mod ''p''), which means that ''a''2''q'' − 1 ≡ 0 (mod ''p''). This can be factored as (''a''''q'' − 1)(''a''''q'' + 1) ≡ 0 (mod ''p''), which is equivalent to ''a''(''p''−1)/2 ≡ ±1 (mod ''p''). The equation can be tested rather quickly, which can be used for probabilistic primality testing. These tests ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat's Little Theorem
Fermat's little theorem states that if ''p'' is a prime number, then for any integer ''a'', the number a^p - a is an integer multiple of ''p''. In the notation of modular arithmetic, this is expressed as : a^p \equiv a \pmod p. For example, if = 2 and = 7, then 27 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If is not divisible by , that is if is coprime to , Fermat's little theorem is equivalent to the statement that is an integer multiple of , or in symbols: : a^ \equiv 1 \pmod p. For example, if = 2 and = 7, then 26 = 64, and 64 − 1 = 63 = 7 × 9 is thus a multiple of 7. Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it in 1640. It is called the "little theorem" to distinguish it from Fermat's Last Theorem.. History Pierre de Fermat first stated the theorem in a letter dated Oct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Odd Number
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; other ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Testing
A primality test is an algorithm for determining whether an input number is prime. Among other fields of mathematics, it is used for cryptography. Unlike integer factorization, primality tests do not generally give prime factors, only stating whether the input number is prime or not. Factorization is thought to be a computationally difficult problem, whereas primality testing is comparatively easy (its running time is polynomial in the size of the input). Some primality tests prove that a number is prime, while others like Miller–Rabin prove that a number is composite. Therefore, the latter might more accurately be called ''compositeness tests'' instead of primality tests. Simple methods The simplest primality test is ''trial division'': given an input number, ''n'', check whether it is evenly divisible by any prime number between 2 and (i.e. that the division leaves no remainder). If so, then ''n'' is composite. Otherwise, it is prime.Riesel (1994) pp.2-3 For example, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |