Lucas Pseudoprime
   HOME





Lucas Pseudoprime
Lucas pseudoprimes and Fibonacci pseudoprimes are composite integers that pass certain tests which all primes and very few composite numbers pass: in this case, criteria relative to some Lucas sequence. Baillie-Wagstaff-Lucas pseudoprimes Baillie and Wagstaff define Lucas pseudoprimes as follows: Given integers ''P'' and ''Q'', where ''P'' > 0 and D=P^2-4Q, let ''Uk''(''P'', ''Q'') and ''Vk''(''P'', ''Q'') be the corresponding Lucas sequences. Let ''n'' be a positive integer and let \left(\tfrac\right) be the Jacobi symbol. We define : \delta(n)=n-\left(\tfrac\right). If ''n'' is a prime that does not divide ''Q'', then the following congruence condition holds: If this congruence does ''not'' hold, then ''n'' is ''not'' prime. If ''n'' is ''composite'', then this congruence ''usually'' does not hold. These are the key facts that make Lucas sequences useful in primality testing. The congruence () represents one of two congruences defining a Frobenius pseudoprime. Hence, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composite Number
A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Accordingly it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime number, prime, or the Unit (ring theory), unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself. The composite numbers up to 150 are: :4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar example of modular arithmetic is the hour hand on a 12-hour clock. If the hour hand points to 7 now, then 8 hours later it will point to 3. Ordinary addition would result in , but 15 reads as 3 on the clock face. This is because the hour hand makes one rotation every 12 hours and the hour number starts over when the hour hand passes 12. We say that 15 is ''congruent'' to 3 modulo 12, written 15 ≡ 3 (mod 12), so that 7 + 8 ≡ 3 (mod 12). Similarly, if one starts at 12 and waits 8 hours, the hour hand will be at 8. If one instead waited twice as long, 16 hours, the hour hand would be on 4. This ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pell Sequence
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins , , , , and , so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82. Both the Pell numbers and the companion Pell numbers may be calculated by means of a recurrence relation similar to that for the Fibonacci numbers, and both sequences of numbers grow exponentially, proportionally to powers of the silver ratio 1 + . As well as being used to approximate the square root of two, Pell numbers can be used to find square triangular numbers, to construct integer approximations to the right isosceles triangle, and to solve certain combinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Carmichael Number
In number theory, a Carmichael number is a composite number which in modular arithmetic satisfies the congruence relation: : b^n\equiv b\pmod for all integers . The relation may also be expressed in the form: : b^\equiv 1\pmod for all integers b that are relatively prime to . They are infinite set, infinite in number. They constitute the comparatively rare instances where the strict converse of Fermat's Little Theorem does not hold. This fact precludes the use of that theorem as an absolute test of Prime numbers, primality. The Carmichael numbers form the subset ''K''1 of the Knödel numbers. The Carmichael numbers were named after the American mathematician Robert Daniel Carmichael, Robert Carmichael by N. G. W. H. Beeger, Nicolaas Beeger, in 1950. Øystein Ore had referred to them in 1948 as numbers with the "Fermat property", or "''F'' numbers" for short. Overview Fermat's little theorem states that if p is a prime number, then for any integer , the number b^p-b is an i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fermat Pseudoprime
In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem. Definition Fermat's little theorem states that if p is prime and a is coprime to p, then a^-1 is divisible by p. For a positive integer a, if a composite integer x divides a^-1 then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2^ \equiv 1 (\bmod) and thus passes the Fermat primality test for the base 2. Pseudoprimes to base 2 are sometimes called Sarrus numbers, after P. F. Sarrus who discovered that 341 has this property, Poulet numbers, after P. Poulet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fermat Primality Test
The Fermat primality test is a probabilistic test to determine whether a number is a probable prime. Concept Fermat's little theorem states that if ''p'' is prime and ''a'' is not divisible by ''p'', then :a^ \equiv 1 \pmod. If one wants to test whether ''p'' is prime, then we can pick random integers ''a'' not divisible by ''p'' and see whether the congruence holds. If it does not hold for a value of ''a'', then ''p'' is composite. This congruence is unlikely to hold for a random ''a'' if ''p'' is composite. Therefore, if the equality does hold for one or more values of ''a'', then we say that ''p'' is probably prime. However, note that the above congruence holds trivially for a \equiv 1 \pmod, because the congruence relation is compatible with exponentiation. It also holds trivially for a \equiv -1 \pmod if ''p'' is odd, for the same reason. That is why one usually chooses a random ''a'' in the interval 1 < a < p - 1. Any ''a'' such that :a^ \equiv 1 \pmod
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twin Prime
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term ''twin prime'' is used for a pair of twin primes; an alternative name for this is prime twin or prime pair. Twin primes become increasingly rare as one examines larger ranges, in keeping with the general tendency of gaps between adjacent primes to become larger as the numbers themselves get larger. However, it is unknown whether there are infinitely many twin primes (the so-called twin prime conjecture) or if there is a largest pair. The breakthrough work of Yitang Zhang in 2013, as well as work by James Maynard, Terence Tao and others, has made substantial progress towards proving that there are infinitely many twin primes, but at present this remains unsolved. Properties Usually the pair is not considered to be a pair of twin primes. Since 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Miller–Rabin Primality Test
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic primality test. Its probabilistic variant remains widely used in practice, as one of the simplest and fastest tests known. Gary L. Miller discovered the test in 1976. Miller's version of the test is deterministic, but its correctness relies on the unproven extended Riemann hypothesis. Michael O. Rabin modified it to obtain an unconditional probabilistic algorithm in 1980. Mathematical concepts Similarly to the Fermat and Solovay–Strassen tests, the Miller–Rabin primality test checks whether a specific property, which is known to hold for prime values, holds for the number under testing. Strong probable primes The property is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solovay–Strassen Primality Test
The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic primality test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 (see Theorem E in the paper). This test has been largely superseded by the Baillie–PSW primality test and the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem. Concepts Euler proved that for any odd prime number ''p'' and any integer ''a'', :a^ \equiv \left(\frac\right) \pmod p where \left(\tfrac\right) is the Legendre symbol. The Jacobi symbol is a generalisation of the Legendre symbol to \left(\tfrac\right), where ''n'' can be any odd integer. The Jacobi symbol can be computed in time O((log ''n'')²) using Jacobi's generalization of the law of quadratic reciprocity. Given an odd number ''n'' one can contemplate whether or not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Legendre Symbol
In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number ''p'': its value at a (nonzero) quadratic residue mod ''p'' is 1 and at a non-quadratic residue (''non-residue'') is −1. Its value at zero is 0. The Legendre symbol was introduced by Adrien-Marie Legendre in 1797 or 1798 in the course of his attempts at proving the law of quadratic reciprocity. Generalizations of the symbol include the Jacobi symbol and Dirichlet characters of higher order. The notational convenience of the Legendre symbol inspired introduction of several other "symbols" used in algebraic number theory, such as the Hilbert symbol and the Artin symbol. Definition Let p be an odd prime number. An integer a is a quadratic residue modulo p if it is modular arithmetic, congruent to a square number, perfect square modulo p and is a quadratic nonresidue modulo p otherwise. The Legendre symbol is a function of a a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler's Criterion
In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely, Let ''p'' be an odd prime and ''a'' be an integer coprime to ''p''. Then : a^ \equiv \begin \;\;\,1\pmod& \textx \textx^2\equiv a \pmod,\\ -1\pmod& \text \end Euler's criterion can be concisely reformulated using the Legendre symbol: : \left(\frac\right) \equiv a^ \pmod p. The criterion dates from a 1748 paper by Leonhard Euler.L Euler, Novi commentarii Academiae Scientiarum Imperialis Petropolitanae, 8, 1760-1, 74; Opusc Anal. 1, 1772, 121; Comm. Arith, 1, 274, 487 Proof The proof uses the fact that the residue classes modulo a prime number are a field. See the article prime field for more details. Because the modulus is prime, Lagrange's theorem applies: a polynomial of degree can only have at most roots. In particular, has at most 2 solutions for each . This immediately implies that besides 0 there are at least distinct quadrati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]