Peano's Axioms
   HOME

TheInfoList



OR:

In
mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
, the Peano axioms (, ), also known as the Dedekind–Peano axioms or the Peano postulates, are
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s for the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s presented by the 19th-century Italian mathematician
Giuseppe Peano Giuseppe Peano (; ; 27 August 1858 – 20 April 1932) was an Italian mathematician and glottologist. The author of over 200 books and papers, he was a founder of mathematical logic and set theory, to which he contributed much Mathematical notati ...
. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether
number theory Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
is
consistent In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences ...
and
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
. The
axiomatization In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establishes ...
of
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
provided by Peano axioms is commonly called Peano arithmetic. The importance of formalizing
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
was not well appreciated until the work of
Hermann Grassmann Hermann Günther Grassmann (, ; 15 April 1809 – 26 September 1877) was a German polymath known in his day as a linguist and now also as a mathematician. He was also a physicist, general scholar, and publisher. His mathematical work was littl ...
, who showed in the 1860s that many facts in arithmetic could be derived from more basic facts about the successor operation and induction. In 1881,
Charles Sanders Peirce Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American scientist, mathematician, logician, and philosopher who is sometimes known as "the father of pragmatism". According to philosopher Paul Weiss (philosopher), Paul ...
provided an
axiomatization In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establishes ...
of natural-number arithmetic. In 1888,
Richard Dedekind Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
proposed another axiomatization of natural-number arithmetic, and in 1889, Peano published a simplified version of them as a collection of axioms in his book ''The principles of arithmetic presented by a new method'' (). The nine Peano axioms contain three types of statements. The first axiom asserts the existence of at least one member of the set of natural numbers. The next four are general statements about
equality Equality generally refers to the fact of being equal, of having the same value. In specific contexts, equality may refer to: Society * Egalitarianism, a trend of thought that favors equality for all people ** Political egalitarianism, in which ...
; in modern treatments these are often not taken as part of the Peano axioms, but rather as axioms of the "underlying logic". The next three axioms are first-order statements about natural numbers expressing the fundamental properties of the successor operation. The ninth, final, axiom is a
second-order Second-order may refer to: Mathematics * Second order approximation, an approximation that includes quadratic terms * Second-order arithmetic, an axiomatization allowing quantification of sets of numbers * Second-order differential equation, a d ...
statement of the principle of mathematical induction over the natural numbers, which makes this formulation close to
second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, ...
. A weaker first-order system is obtained by explicitly adding the addition and multiplication operation symbols and replacing the second-order induction axiom with a first-order
axiom schema In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. Formal definition An axiom schema is a formula in the metalanguage of an axiomatic system, in which one or more schematic variabl ...
. The term ''Peano arithmetic'' is sometimes used for specifically naming this restricted system.


Historical second-order formulation

When Peano formulated his axioms, the language of
mathematical logic Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic com ...
was in its infancy. The system of logical notation he created to present the axioms did not prove to be popular, although it was the genesis of the modern notation for
set membership In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called containing the first four positive integers (A = \), one could say that "3 is an element of ", expressed ...
(∈, which comes from Peano's ε). Peano maintained a clear distinction between mathematical and logical symbols, which was not yet common in mathematics; such a separation had first been introduced in the ''
Begriffsschrift ''Begriffsschrift'' (German for, roughly, "concept-writing") is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book. ''Begriffsschrift'' is usually translated as ''concept writing'' or ''concept notati ...
'' by
Gottlob Frege Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philos ...
, published in 1879. Peano was unaware of Frege's work and independently recreated his logical apparatus based on the work of
Boole George Boole ( ; 2 November 1815 – 8 December 1864) was a largely self-taught English mathematician, philosopher and logician, most of whose short career was spent as the first professor of mathematics at Queen's College, Cork in Ireland. ...
and
Schröder Schröder (Schroeder) is a German language, German surname often associated with the Schröder family. Notable people with the surname include: * Arthur Schröder (1892–1986), German actor * Atze Schröder, stage name of German comedian Hubertu ...
. The Peano axioms define the arithmetical properties of ''
natural numbers In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positiv ...
'', usually represented as a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
N or \mathbb. The
non-logical symbol In logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and non-logical symbols (sometimes a ...
s for the axioms consist of a constant symbol 0 and a unary function symbol ''S''. The first axiom states that the constant 0 is a natural number: Peano's original formulation of the axioms used 1 instead of 0 as the "first" natural number, while the axioms in ''
Formulario mathematico ''Formulario Mathematico'' (Latino sine flexione: ''Formulary for Mathematics'') is a book by Giuseppe Peano which expresses fundamental theorems of mathematics in a Symbolic language (mathematics), symbolic language developed by Peano. The autho ...
'' include zero. The next four axioms describe the
equality Equality generally refers to the fact of being equal, of having the same value. In specific contexts, equality may refer to: Society * Egalitarianism, a trend of thought that favors equality for all people ** Political egalitarianism, in which ...
relation Relation or relations may refer to: General uses * International relations, the study of interconnection of politics, economics, and law on a global level * Interpersonal relationship, association or acquaintance between two or more people * ...
. Since they are logically valid in first-order logic with equality, they are not considered to be part of "the Peano axioms" in modern treatments. The remaining axioms define the arithmetical properties of the natural numbers. The naturals are assumed to be closed under a single-valued "
successor Successor may refer to: * An entity that comes after another (see Succession (disambiguation)) Film and TV * ''The Successor'' (1996 film), a film including Laura Girling * The Successor (2023 film), a French drama film * ''The Successor'' ( ...
"
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
''S''. Axioms 1, 6, 7, 8 define a unary representation of the intuitive notion of natural numbers: the number 1 can be defined as ''S''(0), 2 as ''S''(''S''(0)), etc. However, considering the notion of natural numbers as being defined by these axioms, axioms 1, 6, 7, 8 do not imply that the successor function generates all the natural numbers different from 0. The intuitive notion that each natural number can be obtained by applying ''successor'' sufficiently many times to zero requires an additional axiom, which is sometimes called the '' axiom of induction''. The induction axiom is sometimes stated in the following form: In Peano's original formulation, the induction axiom is a second-order axiom. It is now common to replace this second-order principle with a weaker first-order induction scheme. There are important differences between the second-order and first-order formulations, as discussed in the section below.


Defining arithmetic operations and relations

If we use the second-order induction axiom, it is possible to define
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
,
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, and total (linear) ordering on N directly using the axioms. However, and addition and multiplication are often added as axioms. The respective functions and relations are constructed in
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
or
second-order logic In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies on ...
, and can be shown to be unique using the Peano axioms.


Addition

Addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
is a function that
maps A map is a symbolic depiction of interrelationships, commonly spatial, between things within a space. A map may be annotated with text and graphics. Like any graphic, a map may be fixed to paper or other durable media, or may be displayed on ...
two natural numbers (two elements of N) to another one. It is defined
recursively Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in m ...
as: : \begin a + 0 &= a , & \textrm\\ a + S (b) &= S (a + b). & \textrm \end For example: : \begin a + 1 &= a + S(0) & \mbox \\ &= S(a + 0) & \mbox \\ &= S(a), & \mbox \\ \\ a + 2 &= a + S(1) & \mbox \\ &= S(a + 1) & \mbox \\ &= S(S(a)) & \mbox a + 1 = S(a) \\ \\ a + 3 &= a + S(2) & \mbox \\ &= S(a + 2) & \mbox \\ &= S(S(S(a))) & \mbox a + 2 = S(S(a)) \\ \text & \\ \end To prove commutativity of addition, first prove 0+b=b and S(a)+b=S(a+b), each by induction on b. Using both results, then prove a+b=b+a by induction on b. The
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
is a
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
monoid In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity ...
with identity element 0. is also a cancellative
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
, and thus embeddable in a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
. The smallest group embedding N is the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s.


Multiplication

Similarly,
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
is a function mapping two natural numbers to another one. Given addition, it is defined recursively as: : \begin a \cdot 0 &= 0, \\ a \cdot S (b) &= a + (a \cdot b). \end It is easy to see that S(0) is the multiplicative right identity: :a\cdot S(0) = a + (a\cdot 0) = a + 0 = a To show that S(0) is also the multiplicative left identity requires the induction axiom due to the way multiplication is defined: * S(0) is the left identity of 0: S(0)\cdot 0 = 0. * If S(0) is the left identity of a (that is S(0)\cdot a = a), then S(0) is also the left identity of S(a): S(0)\cdot S(a) = S(0) + S(0)\cdot a = S(0) + a = a + S(0) = S(a + 0) = S(a), using commutativity of addition. Therefore, by the induction axiom S(0) is the multiplicative left identity of all natural numbers. Moreover, it can be shown that multiplication is commutative and distributes over addition: : a \cdot (b + c) = (a\cdot b) + (a\cdot c). Thus, (\N, +, 0, \cdot, S(0)) is a commutative
semiring In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distribu ...
.


Inequalities

The usual
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
relation ≤ on natural numbers can be defined as follows, assuming 0 is a natural number: : For all , if and only if there exists some such that . This relation is stable under addition and multiplication: for a, b, c \in \N , if , then: * ''a'' + ''c'' ≤ ''b'' + ''c'', and * ''a'' · ''c'' ≤ ''b'' · ''c''. Thus, the structure is an ordered semiring; because there is no natural number between 0 and 1, it is a discrete ordered semiring. The axiom of induction is sometimes stated in the following form that uses a stronger hypothesis, making use of the order relation "≤": : For any
predicate Predicate or predication may refer to: * Predicate (grammar), in linguistics * Predication (philosophy) * several closely related uses in mathematics and formal logic: **Predicate (mathematical logic) **Propositional function **Finitary relation, o ...
''φ'', if :* ''φ''(0) is true, and :* for every , if ''φ''(''k'') is true for every such that , then ''φ''(''S''(''n'')) is true, :* then for every , ''φ''(''n'') is true. This form of the induction axiom, called ''strong induction'', is a consequence of the standard formulation, but is often better suited for reasoning about the ≤ order. For example, to show that the naturals are
well-order In mathematics, a well-order (or well-ordering or well-order relation) on a set is a total ordering on with the property that every non-empty subset of has a least element in this ordering. The set together with the ordering is then calle ...
ed—every
nonempty In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, whi ...
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
of N has a
least element In mathematics, especially in order theory, the greatest element of a subset S of a partially ordered set (poset) is an element of S that is greater than every other element of S. The term least element is defined dually, that is, it is an ele ...
—one can reason as follows. Let a nonempty be given and assume ''X'' has no least element. * Because 0 is the least element of N, it must be that . * For any , suppose for every , . Then , for otherwise it would be the least element of ''X''. Thus, by the strong induction principle, for every , . Thus, , which contradicts ''X'' being a nonempty subset of N. Thus ''X'' has a least element.


Models

A
model A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , . Models can be divided in ...
of the Peano axioms is a triple , where N is a (necessarily infinite) set, and satisfies the axioms above.
Dedekind Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. H ...
proved in his 1888 book, ''The Nature and Meaning of Numbers'' (, i.e., "What are the numbers and what are they good for?") that any two models of the Peano axioms (including the second-order induction axiom) are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
. In particular, given two models and of the Peano axioms, there is a unique
homomorphism In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
satisfying : \begin f(0_A) &= 0_B \\ f(S_A (n)) &= S_B (f (n)) \end and it is a
bijection In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equival ...
. This means that the second-order Peano axioms are categorical. (This is not the case with any first-order reformulation of the Peano axioms, below.)


Set-theoretic models

The Peano axioms can be derived from set theoretic constructions of the
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s and axioms of set theory such as ZF. The standard construction of the naturals, due to
John von Neumann John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
, starts from a definition of 0 as the empty set, ∅, and an operator ''s'' on sets defined as: : s(a) = a \cup \ The set of natural numbers N is defined as the intersection of all sets closed under ''s'' that contain the empty set. Each natural number is equal (as a set) to the set of natural numbers less than it: : \begin 0 &= \emptyset \\ 1 &= s(0) = s(\emptyset) = \emptyset \cup \ = \ = \ \\ 2 &= s(1) = s(\) = \ \cup \ = \ = \ \\ 3 &= s(2) = s(\) = \ \cup \ = \ = \ \end and so on. The set N together with 0 and the
successor function In mathematics, the successor function or successor operation sends a natural number to the next one. The successor function is denoted by ''S'', so ''S''(''n'') = ''n'' +1. For example, ''S''(1) = 2 and ''S''(2) = 3. The successor functio ...
satisfies the Peano axioms. Peano arithmetic is
equiconsistent In mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not p ...
with several weak systems of set theory. One such system is ZFC with the
axiom of infinity In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing ...
replaced by its negation. Another such system consists of
general set theory General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms. ...
(
extensionality In logic, extensionality, or extensional equality, refers to principles that judge objects to be equality (mathematics), equal if they have the same external properties. It stands in contrast to the concept of intensionality, which is concerned wi ...
, existence of the
empty set In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exi ...
, and the
axiom of adjunction In mathematical set theory, the axiom of adjunction states that for any two sets ''x'', ''y'' there is a set ''w'' = ''x'' ∪  given by "adjoining" the set ''y'' to the set ''x''. It is stated as :\forall x. \forall y. \exist ...
), augmented by an axiom schema stating that a property that holds for the empty set and holds of an adjunction whenever it holds of the adjunct must hold for all sets.


Interpretation in category theory

The Peano axioms can also be understood using
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
. Let ''C'' be a
category Category, plural categories, may refer to: General uses *Classification, the general act of allocating things to classes/categories Philosophy * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) * Category ( ...
with
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
1''C'', and define the category of pointed unary systems, US1(''C'') as follows: * The objects of US1(''C'') are triples where ''X'' is an object of ''C'', and and are ''C''-morphisms. * A morphism ''φ'' : (''X'', 0''X'', ''S''''X'') → (''Y'', 0''Y'', ''S''''Y'') is a ''C''-morphism with and . Then ''C'' is said to satisfy the Dedekind–Peano axioms if US1(''C'') has an initial object; this initial object is known as a
natural number object In category theory, a natural numbers object (NNO) is an object endowed with a Recursion (computer science), recursive Mathematical structure, structure similar to natural numbers. More precisely, in a Category (mathematics), category E with a termi ...
in ''C''. If is this initial object, and is any other object, then the unique map is such that : \begin u (0) &= 0_X, \\ u (S x) &= S_X (u x). \end This is precisely the recursive definition of 0''X'' and ''S''''X''.


Consistency

When the Peano axioms were first proposed,
Bertrand Russell Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
and others agreed that these axioms implicitly defined what we mean by a "natural number".
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
was more cautious, saying they only defined natural numbers if they were ''consistent''; if there is a proof that starts from just these axioms and derives a contradiction such as 0 = 1, then the axioms are inconsistent, and don't define anything. In 1900,
David Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time. Hilbert discovered and developed a broad range of fundamental idea ...
posed the problem of proving their consistency using only finitistic methods as the
second The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
of his twenty-three problems. In 1931,
Kurt Gödel Kurt Friedrich Gödel ( ; ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel profoundly ...
proved his
second incompleteness theorem The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of Un ...
, which shows that such a consistency proof cannot be formalized within Peano arithmetic itself, if Peano arithmetic is consistent. Although it is widely claimed that Gödel's theorem rules out the possibility of a finitistic consistency proof for Peano arithmetic, this depends on exactly what one means by a finitistic proof. Gödel himself pointed out the possibility of giving a finitistic consistency proof of Peano arithmetic or stronger systems by using finitistic methods that are not formalizable in Peano arithmetic, and in 1958, Gödel published a method for proving the consistency of arithmetic using
type theory In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of ...
. In 1936,
Gerhard Gentzen Gerhard Karl Erich Gentzen (24 November 1909 – 4 August 1945) was a German mathematician and logician. He made major contributions to the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died ...
gave a proof of the consistency of Peano's axioms, using
transfinite induction Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Induction by cases Let P(\alpha) be a property defined for a ...
up to an ordinal called ε0. Gentzen explained: "The aim of the present paper is to prove the consistency of elementary number theory or, rather, to reduce the question of consistency to certain fundamental principles". Gentzen's proof is arguably finitistic, since the transfinite ordinal ε0 can be encoded in terms of finite objects (for example, as a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
describing a suitable order on the integers, or more abstractly as consisting of the finite
trees In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only p ...
, suitably linearly ordered). Whether or not Gentzen's proof meets the requirements Hilbert envisioned is unclear: there is no generally accepted definition of exactly what is meant by a finitistic proof, and Hilbert himself never gave a precise definition. The vast majority of contemporary mathematicians believe that Peano's axioms are consistent, relying either on intuition or the acceptance of a consistency proof such as Gentzen's proof. A small number of philosophers and mathematicians, some of whom also advocate
ultrafinitism In the philosophy of mathematics, ultrafinitism (also known as ultraintuitionism,International Workshop on Logic and Computational Complexity, ''Logic and Computational Complexity'', Springer, 1995, p. 31. strict formalism,St. Iwan (2000),On the U ...
, reject Peano's axioms because accepting the axioms amounts to accepting the infinite collection of natural numbers. In particular, addition (including the successor function) and multiplication are assumed to be
total Total may refer to: Mathematics * Total, the summation of a set of numbers * Total order, a partial order without incomparable pairs * Total relation, which may also mean ** connected relation (a binary relation in which any two elements are comp ...
. Curiously, there are
self-verifying theories Self-verifying theories are consistent first-order systems of arithmetic, much weaker than Peano arithmetic, that are capable of proving their own consistency. Dan Willard was the first to investigate their properties, and he has described a fami ...
that are similar to PA but have subtraction and division instead of addition and multiplication, which are axiomatized in such a way to avoid proving sentences that correspond to the totality of addition and multiplication, but which are still able to prove all true \Pi_1 theorems of PA, and yet can be extended to a consistent theory that proves its own consistency (stated as the non-existence of a Hilbert-style proof of "0=1").


Peano arithmetic as first-order theory

All of the Peano axioms except the ninth axiom (the induction axiom) are statements in
first-order logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over ...
. The arithmetical operations of addition and multiplication and the order relation can also be defined using first-order axioms. The axiom of induction above is
second-order Second-order may refer to: Mathematics * Second order approximation, an approximation that includes quadratic terms * Second-order arithmetic, an axiomatization allowing quantification of sets of numbers * Second-order differential equation, a d ...
, since it quantifies over predicates (equivalently, sets of natural numbers rather than natural numbers). As an alternative one can consider a first-order ''
axiom schema In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. Formal definition An axiom schema is a formula in the metalanguage of an axiomatic system, in which one or more schematic variabl ...
'' of induction. Such a schema includes one axiom per predicate definable in the first-order language of Peano arithmetic, making it weaker than the second-order axiom. The reason that it is weaker is that the number of predicates in first-order language is countable, whereas the number of sets of natural numbers is uncountable. Thus, there exist sets that cannot be described in first-order language (in fact, most sets have this property). First-order axiomatizations of Peano arithmetic have another technical limitation. In second-order logic, it is possible to define the addition and multiplication operations from the successor operation, but this cannot be done in the more restrictive setting of first-order logic. Therefore, the addition and multiplication operations are directly included in the
signature A signature (; from , "to sign") is a depiction of someone's name, nickname, or even a simple "X" or other mark that a person writes on documents as a proof of identity and intent. Signatures are often, but not always, Handwriting, handwritt ...
of Peano arithmetic, and axioms are included that relate the three operations to each other. The following list of axioms (along with the usual axioms of equality), which contains six of the seven axioms of
Robinson arithmetic In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by Raphael M. Robinson in 1950. It is usually denoted Q. Q is almost PA without the axiom schema of mathematical inducti ...
, is sufficient for this purpose: * \forall x \ (0 \neq S ( x )) * \forall x, y \ (S( x ) = S( y ) \Rightarrow x = y) * \forall x \ (x + 0 = x ) * \forall x, y \ (x + S( y ) = S( x + y )) * \forall x \ (x \cdot 0 = 0) * \forall x, y \ (x \cdot S ( y ) = x \cdot y + x ) In addition to this list of numerical axioms, Peano arithmetic contains the induction schema, which consists of a
recursively enumerable In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the ...
and even decidable set of
axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
. For each formula in the language of Peano arithmetic, the first-order induction axiom for ''φ'' is the sentence :\forall \bar \Bigg(\bigg(\varphi(0,\bar) \land \forall x \Big( \varphi(x,\bar)\Rightarrow\varphi(S(x),\bar)\Big)\bigg) \Rightarrow \forall x \varphi(x,\bar)\Bigg) where \bar is an abbreviation for ''y''1,...,''y''''k''. The first-order induction schema includes every instance of the first-order induction axiom; that is, it includes the induction axiom for every formula ''φ''.


Equivalent axiomatizations

The above axiomatization of Peano arithmetic uses a signature that only has symbols for zero as well as the successor, addition, and multiplications operations. There are many other different, but equivalent, axiomatizations. One such alternative uses an order relation symbol instead of the successor operation and the language of discretely ordered semirings (axioms 1-7 for semirings, 8-10 on order, 11-13 regarding compatibility, and 14-15 for discreteness): # \forall x, y, z \ ( (x + y) + z = x + (y + z) ), i.e., addition is
associative In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for express ...
. # \forall x, y \ ( x + y = y + x ), i.e., addition is
commutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
. # \forall x, y, z \ ( (x \cdot y) \cdot z = x \cdot (y \cdot z) ), i.e., multiplication is associative. # \forall x, y \ ( x \cdot y = y \cdot x ), i.e., multiplication is commutative. # \forall x, y, z \ ( x \cdot (y + z) = (x \cdot y) + (x \cdot z) ), i.e., multiplication distributes over addition. # \forall x \ ( x + 0 = x \land x \cdot 0 = 0 ), i.e., zero is an
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an ...
for addition, and an
absorbing element In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element ...
for multiplication (actually superfluous). # \forall x \ ( x \cdot 1 = x ), i.e., one is an
identity Identity may refer to: * Identity document * Identity (philosophy) * Identity (social science) * Identity (mathematics) Arts and entertainment Film and television * ''Identity'' (1987 film), an Iranian film * ''Identity'' (2003 film), an ...
for multiplication. # \forall x, y, z \ ( x < y \land y < z \Rightarrow x < z ), i.e., the '<' operator is transitive. # \forall x \ ( \neg (x < x) ), i.e., the '<' operator is
irreflexive In mathematics, a binary relation R on a set X is reflexive if it relates every element of X to itself. An example of a reflexive relation is the relation " is equal to" on the set of real numbers, since every real number is equal to itself. A ...
. # \forall x, y \ ( x < y \lor x = y \lor y < x ), i.e., the ordering satisfies
trichotomy A trichotomy can refer to: * Law of trichotomy, a mathematical law that every real number is either positive, negative, or zero ** Trichotomy theorem, in finite group theory * Trichotomy (jazz trio), Australian jazz band, collaborators with Dan ...
. # \forall x, y, z \ ( x < y \Rightarrow x + z < y + z ), i.e. the ordering is preserved under addition of the same element. # \forall x, y, z \ ( 0 < z \land x < y \Rightarrow x \cdot z < y \cdot z ), i.e. the ordering is preserved under multiplication by the same positive element. # \forall x, y \ ( x < y \Rightarrow \exists z \ ( x + z = y ) ), i.e. given any two distinct elements, the larger is the smaller plus another element. # 0 < 1 \land \forall x \ ( x > 0 \Rightarrow x \ge 1 ), i.e. zero and one are distinct and there is no element between them. In other words, 0 is
covered Cover or covers may refer to: Packaging * Another name for a lid * Cover (philately), generic term for envelope or package * Album cover, the front of the packaging * Book cover or magazine cover ** Book design ** Back cover copy, part of ...
by 1, which suggests that these numbers are discrete. # \forall x \ ( x \ge 0 ), i.e. zero is the minimum element. The theory defined by these axioms is known as PA. It is also incomplete and one of its important properties is that any structure M satisfying this theory has an initial segment (ordered by \le) isomorphic to \N. Elements in that segment are called standard elements, while other elements are called nonstandard elements. Finally, Peano arithmetic PA is obtained by adding the first-order induction schema.


Undecidability and incompleteness

According to
Gödel's incompleteness theorems Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the phi ...
, the theory of PA (if consistent) is incomplete. Consequently, there are sentences of
first-order logic First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over ...
(FOL) that are true in the standard model of PA but are not a consequence of the FOL axiomatization. Essential incompleteness already arises for theories with weaker axioms, such as
Robinson arithmetic In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by Raphael M. Robinson in 1950. It is usually denoted Q. Q is almost PA without the axiom schema of mathematical inducti ...
. Closely related to the above incompleteness result (via
Gödel's completeness theorem Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantics, semantic truth and syntactic Provability logic, provability in first-order logic. The completeness theorem applies ...
for FOL) it follows that there is no
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
for deciding whether a given FOL sentence is a consequence of a first-order axiomatization of Peano arithmetic or not. Hence, PA is an example of an undecidable theory. Undecidability arises already for the existential sentences of PA, due to the negative answer to
Hilbert's tenth problem Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equatio ...
, whose proof implies that all
computably enumerable In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the ...
sets are
diophantine set In mathematics, a Diophantine equation is an equation of the form ''P''(''x''1, ..., ''x'j'', ''y''1, ..., ''y'k'') = 0 (usually abbreviated ''P''(', ') = 0) where ''P''(', ') is a polynomial with integer coefficients, where ''x''1, ..., ''x' ...
s, and thus definable by existentially quantified formulas (with free variables) of PA. Formulas of PA with higher
quantifier rank In mathematical logic, the quantifier rank of a Formula (mathematical logic), formula is the depth of nesting of its Quantifier (logic), quantifiers. It plays an essential role in model theory. The quantifier rank is a property of the formula itse ...
(more quantifier alternations) than existential formulas are more expressive, and define sets in the higher levels of the
arithmetical hierarchy In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy (after mathematicians Stephen Cole Kleene and Andrzej Mostowski) classifies certain sets based on the complexity of formulas that define th ...
.


Nonstandard models

Although the usual
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
s satisfy the axioms of PA, there are other models as well (called "
non-standard model In model theory, a discipline within mathematical logic, a non-standard model is a model of a theory that is not isomorphic to the intended model (or standard model).Roman Kossak, 2004 ''Nonstandard Models of Arithmetic and Set Theory'' American M ...
s"); the
compactness theorem In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generall ...
implies that the existence of nonstandard elements cannot be excluded in first-order logic. The upward
Löwenheim–Skolem theorem In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem. The precise formulation is given below. It implies that if a countable first-order ...
shows that there are nonstandard models of PA of all infinite cardinalities. This is not the case for the original (second-order) Peano axioms, which have only one model, up to isomorphism. This illustrates one way the first-order system PA is weaker than the second-order Peano axioms. When interpreted as a proof within a first-order
set theory Set theory is the branch of mathematical logic that studies Set (mathematics), sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathema ...
, such as ZFC, Dedekind's categoricity proof for PA shows that each model of set theory has a unique model of the Peano axioms, up to isomorphism, that embeds as an initial segment of all other models of PA contained within that model of set theory. In the standard model of set theory, this smallest model of PA is the standard model of PA; however, in a nonstandard model of set theory, it may be a nonstandard model of PA. This situation cannot be avoided with any first-order formalization of set theory. It is natural to ask whether a countable nonstandard model can be explicitly constructed. The answer is affirmative as
Skolem Thoralf Albert Skolem (; 23 May 1887 – 23 March 1963) was a Norwegian mathematician who worked in mathematical logic and set theory. Life Although Skolem's father was a primary school teacher, most of his extended family were farmers. Skole ...
in 1933 provided an explicit construction of such a
nonstandard model In model theory, a discipline within mathematical logic, a non-standard model is a model of a theory that is not isomorphic to the intended model (or standard model).Roman Kossak, 2004 ''Nonstandard Models of Arithmetic and Set Theory'' American M ...
. On the other hand, Tennenbaum's theorem, proved in 1959, shows that there is no countable nonstandard model of PA in which either the addition or multiplication operation is
computable Computability is the ability to solve a problem by an effective procedure. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is cl ...
. This result shows it is difficult to be completely explicit in describing the addition and multiplication operations of a countable nonstandard model of PA. There is only one possible
order type In mathematics, especially in set theory, two ordered sets and are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) f\colon X \to Y su ...
of a countable nonstandard model. Letting ''ω'' be the order type of the natural numbers, ''ζ'' be the order type of the integers, and ''η'' be the order type of the rationals, the order type of any countable nonstandard model of PA is , which can be visualized as a copy of the natural numbers followed by a dense linear ordering of copies of the integers.


Overspill

A cut in a nonstandard model ''M'' is a nonempty subset ''C'' of ''M'' so that ''C'' is downward closed (''x'' < ''y'' and ''y'' ∈ ''C'' ⇒ ''x'' ∈ ''C'') and ''C'' is closed under successor. A proper cut is a cut that is a proper subset of ''M''. Each nonstandard model has many proper cuts, including one that corresponds to the standard natural numbers. However, the induction scheme in Peano arithmetic prevents any proper cut from being definable. The overspill lemma, first proved by Abraham Robinson, formalizes this fact.


See also

*
Foundations of mathematics Foundations of mathematics are the mathematical logic, logical and mathematics, mathematical framework that allows the development of mathematics without generating consistency, self-contradictory theories, and to have reliable concepts of theo ...
*
Frege's theorem In metalogic and metamathematics, Frege's theorem is a metatheorem that states that the Peano axioms of arithmetic can be derived in second-order logic from Hume's principle. It was first proven, informally, by Gottlob Frege in his 1884 ''Die Grun ...
*
Goodstein's theorem In mathematical logic, Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which states that every Goodstein sequence (as defined below) eventually terminates at 0. Laurence Kirby and Jeff Paris showed ...
* Neo-logicism *
Non-standard model of arithmetic In mathematical logic, a non-standard model of arithmetic is a model of first-order Peano arithmetic that contains non-standard numbers. The term standard model of arithmetic refers to the standard natural numbers 0, 1, 2, …. The elements o ...
*
Paris–Harrington theorem In mathematical logic, the Paris–Harrington theorem states that a certain claim in Ramsey theory, namely the strengthened finite Ramsey theorem, which is expressible in Peano arithmetic, is not provable in this system. That Ramsey-theoretic clai ...
*
Presburger arithmetic Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omi ...
* Skolem arithmetic *
Robinson arithmetic In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by Raphael M. Robinson in 1950. It is usually denoted Q. Q is almost PA without the axiom schema of mathematical inducti ...
*
Second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation of mathematics, foundation for much, but not all, ...
*
Typographical Number Theory Typographical Number Theory (TNT) is a formal axiomatic system describing the natural numbers that appears in Douglas Hofstadter's book ''Gödel, Escher, Bach''. It is an implementation of Peano arithmetic that Hofstadter uses to help explain Gö ...


Notes


References


Citations


Sources

* * ** Two English translations: *** *** * * * * * * * * Derives the Peano axioms (called S) from several
axiomatic set theories Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly ...
and from
category theory Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory ...
. * * * * * * * * * * * Derives the Peano axioms from ZFC * * ** Contains translations of the following two papers, with valuable commentary: *** *** * * *


Further reading

* * * *


External links

* Includes a discussion of Poincaré's critique of the Peano's axioms. * * * * Commentary on Dedekind's work. {{Mathematical logic 1889 introductions Mathematical axioms Formal theories of arithmetic Logic in computer science Mathematical logic hu:Giuseppe Peano#A természetes számok Peano-axiómái