Semiring
In abstract algebra, a semiring is an algebraic structure. Semirings are a generalization of rings, dropping the requirement that each element must have an additive inverse. At the same time, semirings are a generalization of bounded distributive lattices. The smallest semiring that is not a ring is the two-element Boolean algebra, for instance with logical disjunction \lor as addition. A motivating example that is neither a ring nor a lattice is the set of natural numbers \N (including zero) under ordinary addition and multiplication. Semirings are abundant because a suitable multiplication operation arises as the function composition of endomorphisms over any commutative monoid. Terminology Some authors define semirings without the requirement for there to be a 0 or 1. This makes the analogy between ring and on the one hand and and on the other hand work more smoothly. These authors often use rig for the concept defined here. This originated as a joke, suggestin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Naturally Ordered Semiring
In mathematics, monus is an operator on certain commutative monoids that are not groups. A commutative monoid on which a monus operator is defined is called a commutative monoid with monus, or CMM. The monus operator may be denoted with the − symbol because the natural numbers are a CMM under subtraction; it is also denoted with the \mathop symbol to distinguish it from the standard subtraction operator. Notation A use of the monus symbol is seen in Dennis Ritchie's PhD Thesis from 1968. Definition Let (M, +, 0) be a commutative monoid. Define a binary relation \leq on this monoid as follows: for any two elements a and b, define a \leq b if there exists an element c such that a + c = b. It is easy to check that \leq is reflexive and that it is transitive. M is called ''naturally ordered'' if the \leq relation is additionally antisymmetric and hence a partial order. Further, if for each pair of elements a and b, a unique smallest element c exists such that a \leq b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matrix Semiring
In abstract algebra, a matrix ring is a set of matrices with entries in a ring ''R'' that form a ring under matrix addition and matrix multiplication. The set of all matrices with entries in ''R'' is a matrix ring denoted M''n''(''R'') (alternative notations: Mat''n''(''R'') and ). Some sets of infinite matrices form infinite matrix rings. A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs. When ''R'' is a commutative ring, the matrix ring M''n''(''R'') is an associative algebra over ''R'', and may be called a matrix algebra. In this setting, if ''M'' is a matrix and ''r'' is in ''R'', then the matrix ''rM'' is the matrix ''M'' with each of its entries multiplied by ''r''. Examples * The set of all square matrices over ''R'', denoted M''n''(''R''). This is sometimes called the "full ring of ''n''-by-''n'' matrices". * The set of all upper triangular matrices over ''R''. * The set of all lower triangular matrices over ''R''. * Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Distributive Law
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, one has 2 \cdot (1 + 3) = (2 \cdot 1) + (2 \cdot 3). Therefore, one would say that multiplication ''distributes'' over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields. It is also encountered in Boolean algebra and mathematical logic, where each of the logical and (denoted \,\land\,) and the logical or (denoted \,\lor\,) distributes over the other. Definition Given a set S and two binary operators \,*\, and \,+\, on S, *the operation \,*\, is over (or with respect to) \,+\, if, given any elements x, y, \text z of S, x * (y + z) = (x * y) + (x * z ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring (algebra)
In mathematics, a ring is an algebraic structure consisting of a set with two binary operations called ''addition'' and ''multiplication'', which obey the same basic laws as addition and multiplication of integers, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. A ''ring'' may be defined as a set that is endowed with two binary operations called ''addition'' and ''multiplication'' such that the ring is an abelian group with respect to the addition operator, and the multiplication operator is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors apply the term ''ring'' to a further generalization, often called a '' rng'', that omits the requirement for a multiplicative identity, and instead call the structure defined a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matrix Multiplication
In mathematics, specifically in linear algebra, matrix multiplication is a binary operation that produces a matrix (mathematics), matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices and is denoted as . Matrix multiplication was first described by the French mathematician Jacques Philippe Marie Binet in 1812, to represent the composition of functions, composition of linear maps that are represented by matrices. Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. Computing matrix products is a central operation in all computational applications of linear algebra. Not ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Two-element Boolean Algebra
In mathematics and abstract algebra, the two-element Boolean algebra is the Boolean algebra whose ''underlying set'' (or universe or ''carrier'') ''B'' is the Boolean domain. The elements of the Boolean domain are 1 and 0 by convention, so that ''B'' = . Paul Halmos's name for this algebra "2" has some following in the literature, and will be employed here. Definition ''B'' is a partially ordered set and the elements of ''B'' are also its bounds. An operation of arity ''n'' is a mapping from ''B''n to ''B''. Boolean algebra consists of two binary operations and unary complementation. The binary operations have been named and notated in various ways. Here they are called 'sum' and 'product', and notated by infix '+' and '∙', respectively. Sum and product commute and associate, as in the usual algebra of real numbers. As for the order of operations, brackets are decisive if present. Otherwise '∙' precedes '+'. Hence is parsed as and not as . Complementation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Annihilating Element
In mathematics, an absorbing element (or annihilating element) is a special type of element of a set with respect to a binary operation on that set. The result of combining an absorbing element with any element of the set is the absorbing element itself. In semigroup theory, the absorbing element is called a zero element because there is no risk of confusion with other notions of zero, with the notable exception: under additive notation ''zero'' may, quite naturally, denote the neutral element of a monoid. In this article "zero element" and "absorbing element" are synonymous. Definition Formally, let be a set ''S'' with a closed binary operation • on it (known as a magma). A zero element (or an absorbing/annihilating element) is an element ''z'' such that for all ''s'' in ''S'', . This notion can be refined to the notions of left zero, where one requires only that , and right zero, where . Absorbing elements are particularly interesting for semigroups, especially the multip ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities (known as ''axioms'') that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being . Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata theory (Krohn–Rhodes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |