Orbitrap
   HOME

TheInfoList



OR:

In
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
, Orbitrap is an
ion trap An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in phys ...
mass analyzer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
consisting of an outer barrel-like electrode and a coaxial inner spindle-like electrode that traps ions in an orbital motion around the spindle. The image current from the trapped ions is detected and converted to a
mass spectrum A mass spectrum is a histogram plot of intensity vs. ''mass-to-charge ratio'' (''m/z'') in a chemical sample, usually acquired using an instrument called a ''mass spectrometer''. Not all mass spectra of a given substance are the same; for example ...
using the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
of the frequency signal.


History

The concept of electrostatically trapping ions in an orbit around a central spindle was developed by Kenneth Hay Kingdon in the early 1920s. The
Kingdon trap An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in phy ...
consists of a thin central wire and an outer cylindrical electrode. A static applied voltage results in a radial logarithmic potential between the electrodes. In 1981, Knight introduced a modified outer electrode that included an axial quadrupole term that confines the ions on the trap axis. Neither the Kingdon nor the Knight configurations were reported to produce mass spectra. The invention of the Orbitrap analyzer and its proof-of-principle by Makarov at the end of the 1990s started a sequence of technology improvements which resulted in the commercial introduction of this analyzer by
Thermo Fisher Scientific Thermo Fisher Scientific Inc. is an American supplier of scientific instrumentation, reagents and consumables, and software services. Based in Waltham, Massachusetts, Thermo Fisher was formed through the merger of Thermo Electron and Fisher S ...
as a part of the hybrid LTQ Orbitrap instrument in 2005.


Principle of operation


Trapping

In the Orbitrap, ions are trapped because their electrostatic attraction to the inner electrode is balanced by their inertia. Thus, ions cycle around the inner electrode on elliptical trajectories. In addition, the ions also move back and forth along the axis of the central electrode so that their trajectories in space resemble helices. Due to the properties of the quadro-logarithmic potential, their axial motion is
harmonic A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', the ...
, i.e. it is completely independent not only of motion around the inner electrode but also of all initial parameters of the ions except their
mass-to-charge ratios The mass-to-charge ratio (''m''/''Q'') is a physical quantity relating the ''mass'' (quantity of matter) and the ''electric charge'' of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electro ...
m/z. Its
angular frequency In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit tim ...
is: ''ω'' = , where ''k'' is the
force constant In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of ...
of the potential, similar to the
spring constant In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring (device), spring by some distance () Proportionality (mathematics)#Direct_proportionality, scales linearly with respect to that ...
.


Injection

In order to inject ions from an external ion source, the field between the electrodes is first reduced. As ion packets are injected tangentially into the field, the electric field is increased by ramping the voltage on the inner electrode. Ions get squeezed towards the inner electrode until they reach the desired orbit inside the trap. At that moment ramping is stopped, the field becomes static, and detection can start. Each packet contains a multitude of ions of different velocities spread over a certain volume. These ions move with different rotational frequencies but with the same axial frequency. This means that ions of a specific
mass-to-charge ratio The mass-to-charge ratio (''m''/''Q'') is a physical quantity relating the ''mass'' (quantity of matter) and the ''electric charge'' of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrody ...
spread into rings which oscillate along the inner spindle. Proof-of-principle of the technology was carried out using the direct injection of ions from an external laser desorption and ionization ion source. This method of injection works well with pulsed sources such as
MALDI In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of ...
but cannot be interfaced to continuous ion sources like
electrospray The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter (usually a glass or metallic capilla ...
. All commercial Orbitrap mass spectrometers utilize a curved linear trap for ion injection (C-trap). By rapidly ramping down trapping RF voltages and applying DC gradients across the C-trap, ions can be bunched into short packets similar to those from the laser ion source. The C-trap is tightly integrated with the analyzer, injection optics and differential pumping.


Excitation

In principle, coherent axial oscillations of ion rings could be excited by applying RF waveforms to the outer electrode as demonstrated in and references therein. However, if ion packets are injected away from the minimum of the axial potential (which corresponds to the thickest part of either electrode), this automatically initiates their axial oscillations, eliminating the need for any additional excitation. Furthermore, the absence of additional excitation allows the detection process to start as soon as the detection electronics recover from the voltage ramp needed for ion injection.


Detection

Axial oscillations of ion rings are detected by their image current induced on the outer electrode which is split into two symmetrical pick-up sensors connected to a differential amplifier. By processing data in a manner similar to that used in Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS), the trap can be used as a mass analyzer. Like in FTICR-MS, all the ions are detected simultaneously over some given period of time and resolution can be improved by increasing the strength of the field or by increasing the detection period. The Orbitrap differs from FTICR-MS by the absence of a magnetic field and hence has a significantly slower decrease of resolving power with increasing m/z.


Variants

Currently the Orbitrap analyzer exists in two variants: a standard trap and a compact high-field trap. In practical traps, the outer electrode is sustained at virtual ground and a voltage of 3.5 or 5 kV is applied to the inner electrode only. As a result, the resolving power at m/z 400 and 768 ms detection time can range from 60,000 for a standard trap at 3.5 kV to 280,000 for a high-field trap at 5 kV and with enhanced FT processing. Like in FTICR-MS the Orbitrap resolving power is proportional to the number of harmonic oscillations of the ions; as a result, the resolving power is inversely proportional to the square root of m/z and proportional to acquisition time. For example, the values above would double for m/z 100 and halve for m/z 1600. For the shortest transient of 96 ms these values would be reduced by 8 times, whereas a resolving power in excess of 1,000,000 has been demonstrated in 3-second transients. The Orbitrap analyzer can be interfaced to a
linear ion trap The linear ion trap (LIT) is a type of ion trap mass spectrometer. In a LIT, ions are confined radially by a two-dimensional radio frequency (RF) field, and axially by stopping potentials applied to end electrodes. LITs have high injection effic ...
(LTQ Orbitrap family of instruments),
quadrupole A quadrupole or quadrapole is one of a sequence of configurations of things like electric charge or current, or gravitational mass that can exist in ideal form, but it is usually just part of a multipole expansion of a more complex structure refl ...
mass filter (Q Exactive family) or directly to an ion source (Exactive instrument, all marketed by
Thermo Fisher Scientific Thermo Fisher Scientific Inc. is an American supplier of scientific instrumentation, reagents and consumables, and software services. Based in Waltham, Massachusetts, Thermo Fisher was formed through the merger of Thermo Electron and Fisher S ...
). In addition, a higher-energy collision cell can be appended to the C-trap, with the further addition of
electron-transfer dissociation Electron-transfer dissociation (ETD) is a method of fragmenting multiply-charged gaseous macromolecules in a mass spectrometer between the stages of tandem mass spectrometry (MS/MS). Similar to electron-capture dissociation, ETD induces fragment ...
at its back. Most of these instruments have atmospheric pressure ion sources though an intermediate-pressure
MALDI In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of ...
source can also be used (MALDI LTQ Orbitrap). All of these instruments provide a high mass accuracy (<2–3 ppm with external calibrant and <1–2 ppm with internal), a high resolving power (up to 240,000 at m/z 400), a high dynamic range and high sensitivity.


Applications

Orbitrap-based mass spectrometers are used in
proteomics Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In ...
and are also used in life science
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
such as
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
,
metabolomics Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprin ...
, environmental, food and safety analysis. Most of them are interfaced to
liquid chromatography In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it through a system (a ...
separations, though they are also used with
gas chromatography Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, ...
, secondary ion and
ambient ionization Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed a ...
methods. They have also been used to determine molecular structures of isotopically substituted molecular species.


See also

*
Fourier-transform ion cyclotron resonance Fourier-transform ion cyclotron resonance mass spectrometry is a type of mass analyzer (or mass spectrometer) for determining the mass-to-charge ratio (''m''/''z'') of ions based on the cyclotron frequency of the ions in a fixed magnetic field. T ...


References


External links


Purdue University Orbitrap Page
{{Mass spectrometry Mass spectrometry Russian inventions