Observational Astronomer
   HOME

TheInfoList



OR:

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of
physical model A model is an informative representation of an object, person or system. The term originally denoted the Plan_(drawing), plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a mea ...
s. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments. As a science, the study of astronomy is somewhat hindered in that direct experiments with the properties of the distant universe are not possible. However, this is partly compensated by the fact that astronomers have a vast number of visible examples of stellar phenomena that can be examined. This allows for observational data to be plotted on graphs, and general trends recorded. Nearby examples of specific phenomena, such as variable stars, can then be used to infer the behavior of more distant representatives. Those distant yardsticks can then be employed to measure other phenomena in that neighborhood, including the distance to a
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
. Galileo Galilei turned a telescope to the heavens and recorded what he saw. Since that time, observational astronomy has made steady advances with each improvement in telescope technology.


Subdivisions

A traditional division of observational astronomy is based on the region of the electromagnetic spectrum observed: * Radio astronomy detects
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
of millimetre to decametre wavelength. The receivers are similar to those used in radio broadcast transmission but much more sensitive. See also
Radio telescope A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency ...
s. * Infrared astronomy deals with the detection and analysis of infrared radiation (this typically refers to wavelengths longer than the detection limit of silicon solid-state detectors, about 1 μm wavelength). The most common tool is the reflecting telescope, but with a detector sensitive to infrared wavelengths. Space telescopes are used at certain wavelengths where the atmosphere is opaque, or to eliminate noise (thermal radiation from the atmosphere). * Optical astronomy is the part of astronomy that uses optical instruments (mirrors, lenses, and solid-state detectors) to observe light from near- infrared to near- ultraviolet wavelengths. Visible-light astronomy, using wavelengths detectable with the human eyes (about 400–700 nm), falls in the middle of this spectrum. * High-energy astronomy includes X-ray astronomy, gamma-ray astronomy, and extreme UV astronomy. * Occultation astronomy is the observation of the instant one celestial object occults or eclipses another. Multi-
chord Chord may refer to: * Chord (music), an aggregate of musical pitches sounded simultaneously ** Guitar chord a chord played on a guitar, which has a particular tuning * Chord (geometry), a line segment joining two points on a curve * Chord ( ...
asteroid occultation observations measure the profile of the asteroid to the kilometre level.


Methods

In addition to using electromagnetic radiation, modern astrophysicists can also make observations using neutrinos, cosmic rays or
gravitational wave Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
s. Observing a source using multiple methods is known as multi-messenger astronomy. Optical and radio astronomy can be performed with ground-based observatories, because the atmosphere is relatively transparent at the wavelengths being detected. Observatories are usually located at high altitudes so as to minimise the absorption and distortion caused by the Earth's atmosphere. Some wavelengths of infrared light are heavily absorbed by water vapor, so many infrared observatories are located in dry places at high altitude, or in space. The atmosphere is opaque at the wavelengths used by X-ray astronomy, gamma-ray astronomy, UV astronomy and (except for a few wavelength "windows") far infrared astronomy, so observations must be carried out mostly from balloons or space observatories. Powerful gamma rays can, however be detected by the large air showers they produce, and the study of cosmic rays is a rapidly expanding branch of astronomy.


Important factors

For much of the history of observational astronomy, almost all observation was performed in the visual spectrum with optical telescopes. While the Earth's atmosphere is relatively transparent in this portion of the electromagnetic spectrum, most telescope work is still dependent on
seeing Seeing may refer to: * Visual perception * Astronomical seeing, the blurring effects of air turbulence in the atmosphere * In the occult seeing refers to "the sight" or the ability to see auras or to predict the future; see fortune-telling * ' ...
conditions and air transparency, and is generally restricted to the night time. The seeing conditions depend on the turbulence and thermal variations in the air. Locations that are frequently cloudy or suffer from atmospheric turbulence limit the resolution of observations. Likewise the presence of the full Moon can brighten up the sky with scattered light, hindering observation of faint objects. For observation purposes, the optimal location for an optical telescope is undoubtedly in outer space. There the telescope can make observations without being affected by the
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
. However, at present it remains costly to lift telescopes into orbit. Thus the next best locations are certain mountain peaks that have a high number of cloudless days and generally possess good atmospheric conditions (with good
seeing Seeing may refer to: * Visual perception * Astronomical seeing, the blurring effects of air turbulence in the atmosphere * In the occult seeing refers to "the sight" or the ability to see auras or to predict the future; see fortune-telling * ' ...
conditions). The peaks of the islands of Mauna Kea, Hawaii and La Palma possess these properties, as to a lesser extent do inland sites such as Llano de Chajnantor,
Paranal Cerro Paranal is a mountain in the Atacama Desert of northern Chile and is the home of the Paranal Observatory. Prior to the construction of the observatory, the summit was a horizontal control point with an elevation of ; now it is above sea ...
,
Cerro Tololo The Cerro Tololo Inter-American Observatory (CTIO) is an astronomical observatory located on Cerro Tololo in the Coquimbo Region of northern Chile, with additional facilities located on Cerro Pachón about to the southeast. It is approximately ...
and La Silla in Chile. These observatory locations have attracted an assemblage of powerful telescopes, totalling many billion US dollars of investment. The darkness of the night sky is an important factor in optical astronomy. With the size of cities and human populated areas ever expanding, the amount of artificial light at night has also increased. These artificial lights produce a diffuse background illumination that makes observation of faint astronomical features very difficult without special filters. In a few locations such as the state of Arizona and in the United Kingdom, this has led to campaigns for the reduction of light pollution. The use of hoods around street lights not only improves the amount of light directed toward the ground, but also helps reduce the light directed toward the sky. Atmospheric effects ( astronomical seeing) can severely hinder the resolution of a telescope. Without some means of correcting for the blurring effect of the shifting atmosphere, telescopes larger than about 15–20 cm in aperture can not achieve their theoretical resolution at visible wavelengths. As a result, the primary benefit of using very large telescopes has been the improved light-gathering capability, allowing very faint magnitudes to be observed. However the resolution handicap has begun to be overcome by adaptive optics, speckle imaging and interferometric imaging, as well as the use of space telescopes.


Measuring results

Astronomers have a number of observational tools that they can use to make measurements of the heavens. For objects that are relatively close to the Sun and Earth, direct and very precise position measurements can be made against a more distant (and thereby nearly stationary) background. Early observations of this nature were used to develop very precise orbital models of the various planets, and to determine their respective masses and gravitational perturbations. Such measurements led to the discovery of the planets Uranus,
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
, and (indirectly) Pluto. They also resulted in an erroneous assumption of a fictional planet Vulcan within the orbit of
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
(but the explanation of the precession of Mercury's orbit by
Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
is considered one of the triumphs of his general relativity theory).


Developments and diversity

In addition to examination of the universe in the optical spectrum, astronomers have increasingly been able to acquire information in other portions of the electromagnetic spectrum. The earliest such non-optical measurements were made of the thermal properties of the Sun. Instruments employed during a solar eclipse could be used to measure the radiation from the corona.


Radio astronomy

With the discovery of radio waves, radio astronomy began to emerge as a new discipline in astronomy. The long wavelengths of radio waves required much larger collecting dishes in order to make images with good resolution, and later led to the development of the multi-dish
interferometer Interferometry is a technique which uses the ''interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber op ...
for making high-resolution aperture synthesis radio images (or "radio maps"). The development of the microwave horn receiver led to the discovery of the microwave background radiation associated with the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
. Radio astronomy has continued to expand its capabilities, even using radio astronomy satellites to produce interferometers with baselines much larger than the size of the Earth. However, the ever-expanding use of the radio spectrum for other uses is gradually drowning out the faint radio signals from the stars. For this reason, in the future radio astronomy might be performed from shielded locations, such as the far side of the Moon.


Late 20th-century developments

The last part of the twentieth century saw rapid technological advances in astronomical instrumentation. Optical telescopes were growing ever larger, and employing adaptive optics to partly negate atmospheric blurring. New telescopes were launched into space, and began observing the universe in the infrared, ultraviolet, x-ray, and gamma ray parts of the electromagnetic spectrum, as well as observing cosmic rays. Interferometer arrays produced the first extremely high-resolution images using aperture synthesis at radio, infrared and optical wavelengths. Orbiting instruments such as the Hubble Space Telescope produced rapid advances in astronomical knowledge, acting as the workhorse for visible-light observations of faint objects. New space instruments under development are expected to directly observe planets around other stars, perhaps even some Earth-like worlds. In addition to telescopes, astronomers have begun using other instruments to make observations.


Other instruments

Neutrino astronomy is the branch of astronomy that observes astronomical objects with neutrino detectors in special observatories, usually huge underground tanks. Nuclear reactions in stars and
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
explosions produce very large numbers of neutrinos, very few of which may be detected by a neutrino telescope. Neutrino astronomy is motivated by the possibility of observing processes that are inaccessible to optical telescopes, such as the
Sun's core The core of the Sun is considered to extend from the center to about 0.2 to 0.25 of solar radius (140,000 - 170,000 kilometres (86,000 - 110,000 miles)). It is the hottest part of the Sun and of the Solar System. It has a density of 150 g/c ...
.
Gravitational wave Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
detectors are being designed that may capture events such as collisions of massive objects such as neutron stars or
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
s. Robotic spacecraft are also being increasingly used to make highly detailed observations of planets within the Solar System, so that the field of
planetary science Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their f ...
now has significant cross-over with the disciplines of geology and meteorology.


Observation tools


Telescopes

The key instrument of nearly all modern observational astronomy is the telescope. This serves the dual purposes of gathering more light so that very faint objects can be observed, and magnifying the image so that small and distant objects can be observed. Optical astronomy requires telescopes that use optical components of great precision. Typical requirements for grinding and polishing a curved mirror, for example, require the surface to be within a fraction of a wavelength of light of a particular conic shape. Many modern "telescopes" actually consist of arrays of telescopes working together to provide higher resolution through aperture synthesis. Large telescopes are housed in domes, both to protect them from the weather and to stabilize the environmental conditions. For example, if the temperature is different from one side of the telescope to the other, the shape of the structure changes, due to thermal expansion pushing optical elements out of position. This can affect the image. For this reason, the domes are usually bright white ( titanium dioxide) or unpainted metal. Domes are often opened around sunset, long before observing can begin, so that air can circulate and bring the entire telescope to the same temperature as the surroundings. To prevent wind-buffet or other vibrations affecting observations, it is standard practice to mount the telescope on a concrete pier whose foundations are entirely separate from those of the surrounding dome and building. To do almost any scientific work requires that telescopes track objects as they wheel across the visible sky. In other words, they must smoothly compensate for the rotation of the Earth. Until the advent of
computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform generic sets of operations known as C ...
controlled drive mechanisms, the standard solution was some form of
equatorial mount An equatorial mount is a mount for instruments that compensates for Earth's rotation by having one rotational axis, the polar axis, parallel to the Earth's axis of rotation. This type of mount is used for astronomical telescopes and cameras. The ...
, and for small telescopes this is still the norm. However, this is a structurally poor design and becomes more and more cumbersome as the diameter and weight of the telescope increases. The world's largest equatorial mounted telescope is the 200 inch (5.1 m) Hale Telescope, whereas recent 8–10 m telescopes use the structurally better
altazimuth mount An altazimuth mount or alt-azimuth mount is a simple two-axis mount for supporting and rotating an instrument about two perpendicular axes – one vertical and the other horizontal. Rotation about the vertical axis varies the azimuth (compass bea ...
, and are actually physically ''smaller'' than the Hale, despite the larger mirrors. As of 2006, there are design projects underway for gigantic alt-az telescopes: the Thirty Metre Telescop

and the 100 m diameter Overwhelmingly Large Telescope.The ESO 100-m OWL optical telescope concept
/ref> Amateur astronomers use such instruments as the Newtonian reflector, the Refractor and the increasingly popular Maksutov telescope.


Photography

The
photograph A photograph (also known as a photo, image, or picture) is an image created by light falling on a photosensitive surface, usually photographic film or an electronic image sensor, such as a CCD or a CMOS chip. Most photographs are now create ...
has served a critical role in observational astronomy for over a century, but in the last 30 years it has been largely replaced for imaging applications by digital sensors such as CCDs and
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFE ...
chips. Specialist areas of astronomy such as photometry and interferometry have utilised electronic detectors for a much longer period of time. Astrophotography uses specialised
photographic film Photographic film is a strip or sheet of transparent film base coated on one side with a gelatin photographic emulsion, emulsion containing microscopically small light-sensitive silver halide crystals. The sizes and other characteristics of th ...
(or usually a glass plate coated with photographic emulsion), but there are a number of drawbacks, particularly a low
quantum efficiency The term quantum efficiency (QE) may apply to incident photon to converted electron (IPCE) ratio of a photosensitive device, or it may refer to the TMR effect of a Magnetic Tunnel Junction. This article deals with the term as a measurement of ...
, of the order of 3%, whereas CCDs can be tuned for a QE >90% in a narrow band. Almost all modern telescope instruments are electronic arrays, and older telescopes have been either been retrofitted with these instruments or closed down. Glass plates are still used in some applications, such as surveying, because the resolution possible with a chemical film is much higher than any electronic detector yet constructed.


Advantages

Prior to the invention of photography, all astronomy was done with the naked eye. However, even before films became sensitive enough, scientific astronomy moved entirely to film, because of the overwhelming advantages: * The human eye discards what it sees from split-second to split-second, but photographic film gathers more and more light for as long as the shutter is open. * The resulting image is permanent, so many astronomers can use the same data. * It is possible to see objects as they change over time ( SN 1987A is a spectacular example).


Blink comparator

The blink comparator is an instrument that is used to compare two nearly identical photographs made of the same section of sky at different points in time. The comparator alternates illumination of the two plates, and any changes are revealed by blinking points or streaks. This instrument has been used to find
asteroid An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. ...
s, comets, and variable stars.


Micrometer

The position or cross-wire
micrometer Micrometer can mean: * Micrometer (device), used for accurate measurements by means of a calibrated screw * American spelling of micrometre The micrometre ( international spelling as used by the International Bureau of Weights and Measures; ...
is an implement that has been used to measure
double star In observational astronomy, a double star or visual double is a pair of stars that appear close to each other as viewed from Earth, especially with the aid of optical telescopes. This occurs because the pair either forms a binary star (i.e. a bi ...
s. This consists of a pair of fine, movable lines that can be moved together or apart. The telescope lens is lined up on the pair and oriented using position wires that lie at right angles to the star separation. The movable wires are then adjusted to match the two star positions. The separation of the stars is then read off the instrument, and their true separation determined based on the magnification of the instrument.


Spectrograph

A vital instrument of observational astronomy is the
spectrograph An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
. The absorption of specific wavelengths of light by elements allows specific properties of distant bodies to be observed. This capability has resulted in the discovery of the element of helium in the Sun's
emission spectrum The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an electron making a atomic electron transition, transition from a high energy state to a lower energy st ...
, and has allowed astronomers to determine a great deal of information concerning distant stars, galaxies, and other celestial bodies.
Doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
(particularly "
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
") of spectra can also be used to determine the radial motion or distance with respect to the Earth. Early spectrographs employed banks of prisms that split light into a broad spectrum. Later the grating spectrograph was developed, which reduced the amount of light loss compared to prisms and provided higher spectral resolution. The spectrum can be photographed in a long exposure, allowing the spectrum of faint objects (such as distant galaxies) to be measured. Stellar photometry came into use in 1861 as a means of measuring stellar colors. This technique measured the magnitude of a star at specific frequency ranges, allowing a determination of the overall color, and therefore temperature of a star. By 1951 an internationally standardized system of UBV- magnitudes (''U''ltraviolet-''B''lue-''V''isual) was adopted.


Photoelectric photometry

Photoelectric photometry using the CCD is now frequently used to make observations through a telescope. These sensitive instruments can record the image nearly down to the level of individual photons, and can be designed to view in parts of the spectrum that are invisible to the eye. The ability to record the arrival of small numbers of photons over a period of time can allow a degree of computer correction for atmospheric effects, sharpening up the image. Multiple digital images can also be combined to further enhance the image, often known as "stacking". When combined with the adaptive optics technology, image quality can approach the theoretical resolution capability of the telescope. Filters are used to view an object at particular frequencies or frequency ranges. Multilayer film filters can provide very precise control of the frequencies transmitted and blocked, so that, for example, objects can be viewed at a particular frequency emitted only by excited hydrogen atoms. Filters can also be used to partially compensate for the effects of light pollution by blocking out unwanted light. Polarization filters can also be used to determine if a source is emitting polarized light, and the orientation of the polarization.


Observing

Astronomers observe a wide range of astronomical sources, including high-redshift galaxies, AGNs, the afterglow from the Big Bang and many different types of stars and protostars. A variety of data can be observed for each object. The position coordinates locate the object on the sky using the techniques of spherical astronomy, and the magnitude determines its brightness as seen from the Earth. The relative brightness in different parts of the spectrum yields information about the temperature and physics of the object. Photographs of the spectra allow the chemistry of the object to be examined.
Parallax Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects ...
shifts of a star against the background can be used to determine the distance, out to a limit imposed by the resolution of the instrument. The
radial velocity The radial velocity or line-of-sight velocity, also known as radial speed or range rate, of a target with respect to an observer is the temporal rate of change, rate of change of the distance or Slant range, range between the two points. It is e ...
of the star and changes in its position over time (
proper motion Proper motion is the astrometric measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more dista ...
) can be used to measure its velocity relative to the Sun. Variations in the brightness of the star give evidence of instabilities in the star's atmosphere, or else the presence of an occulting companion. The orbits of binary stars can be used to measure the relative masses of each companion, or the total mass of the system. Spectroscopic binaries can be found by observing
doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
s in the spectrum of the star and its close companion. Stars of identical masses that formed at the same time and under similar conditions typically have nearly identical observed properties. Observing a mass of closely associated stars, such as in a globular cluster, allows data to be assembled about the distribution of stellar types. These tables can then be used to infer the age of the association. For distant
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
and AGNs observations are made of the overall shape and properties of the galaxy, as well as the groupings where they are found. Observations of certain types of variable stars and
supernovae A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when a ...
of known
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
, called standard candles, in other galaxies allows the inference of the distance to the host galaxy. The expansion of space causes the spectra of these galaxies to be shifted, depending on the distance, and modified by the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
of the galaxy's radial velocity. Both the size of the galaxy and its
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
can be used to infer something about the distance of the galaxy. Observations of large numbers of galaxies are referred to as redshift surveys, and are used to model the evolution of galaxy forms.


See also

* Lunar observation * Observational study *
Observatory An observatory is a location used for observing terrestrial, marine, or celestial events. Astronomy, climatology/meteorology, geophysical, oceanography and volcanology are examples of disciplines for which observatories have been constructed. His ...
* Space telescope * Timeline of telescopes, observatories, and observing technology


Related lists

* List of astronomical observatories * List of radio telescopes


References


External links


Archives and iconography
from 17th century preserved by the
Paris Observatory The Paris Observatory (french: Observatoire de Paris ), a research institution of the Paris Sciences et Lettres University, is the foremost astronomical observatory of France, and one of the largest astronomical centers in the world. Its histor ...
library * {{DEFAULTSORT:Observational Astronomy Scientific observation Astronomical sub-disciplines