Neuronal Memory Allocation
   HOME

TheInfoList



OR:

Memory allocation is a process that determines which specific
synapses In the nervous system, a synapse is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending o ...
and
neurons A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
in a neural network will store a given memory.Won, J. and A.J. Silva, Molecular and cellular mechanisms of memory allocation in neuronetworks. Neurobiol Learn Mem, 2007. Silva, A.J., Zhou, Y, Rogerson, T, Shobe, J and Balaji, J. Molecular and Cellular Approaches to Memory Allocation in Neural Circuits. Science, Oct 16 2009;326(5951):391-5. .Rogerson, T. et al. Synaptic tagging during memory allocation. Nature Rev. Neurosci 15, 157-169 (2014) Although multiple neurons can receive a stimulus, only a subset of the neurons will induce the necessary plasticity for memory encoding. The selection of this subset of neurons is termed neuronal allocation. Similarly, multiple synapses can be activated by a given set of inputs, but specific mechanisms determine which synapses actually go on to encode the memory, and this process is referred to as synaptic allocation. Memory allocation was first discovered in the lateral amygdala by Sheena Josselyn and colleagues in Alcino J. Silva's laboratory. At the neuronal level, cells with higher levels of excitability (for example lower slow afterhyperpolarizationZhou, Y., Won, J., Karlsson, M. G., Zhou, M., Rogerson, T., Balaji, J., ... & Silva, A. J. (2009). CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nature neuroscience, 12(11), 1438-1443.) are more likely to be recruited into a memory trace, and substantial evidence exists implicating the cellular transcription factor
CREB CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first des ...
(cyclic AMP responsive element-binding protein) in this process.Yiu, A. P. et al. Neurons Are Recruited to a Memory Trace Based on Relative Neuronal Excitability Immediately before Training. Neuron 83, 722-735 (2014) Certain synapses on recruited neurons are more likely to undergo an enhancement of synaptic strength (known as
Long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neuron ...
(LTP))Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361(6407), 31-39. and proposed mechanisms that might contribute to allocation at the synaptic level include synaptic tagging, capture, and synaptic clustering.


Neuronal allocation

Neuronal allocation is a phenomenon that accounts for how specific neurons in a network, and not others that receive similar input, are committed to storing a specific memory.


The role of CREB in neuronal allocation

The transcription factor cAMP response element-binding protein (CREB) is a well-studied mechanism of neuronal memory allocation. Most studies to date use the
amygdala The amygdala (; : amygdalae or amygdalas; also '; Latin from Greek language, Greek, , ', 'almond', 'tonsil') is a paired nucleus (neuroanatomy), nuclear complex present in the Cerebral hemisphere, cerebral hemispheres of vertebrates. It is c ...
as a model circuit, and fear-related memory traces in the amygdala are mediated by
CREB CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first des ...
expression in the individual neurons allocated to those memories.Han, J. H., Kushner, S. A., Yiu, A. P., Cole, C. J., Matynia, A., Brown, R. A., ... & Josselyn, S. A. (2007). Neuronal competition and selection during memory formation. science, 316(5823), 457-460.Han, J. H., Kushner, S. A., Yiu, A. P., Hsiang, H. L. L., Buch, T., Waisman, A., ... & Josselyn, S. A. (2009). Selective erasure of a fear memory. Science, 323(5920), 1492-1496.
CREB CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first des ...
modulates cellular processes that lead to neuronal allocation, particularly with regards to
dendritic spine A dendritic spine (or spine) is a small membrane protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical sign ...
density and morphology.Sargin, D., Mercaldo, V., Yiu, A. P., Higgs, G., Han, J. H., Frankland, P. W., & Josselyn, S. A. (2013). CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Frontiers in behavioral neuroscience, 7. Many of the memory mechanisms studied to date are conserved across different brain regions, and it is likely that the mechanisms of fear-based memory allocation found in the amygdala will also be similarly present for other types of memories throughout different brain regions. Indeed, Sano and colleagues in the Silva lab showed that CREB also regulates neuronal memory allocation in the amygdala.Sano, Y, Shobe, JL, Zhou, M, Huang, S, Cai, DJ, Roth, BL, Kamata, M, and Silva, AJ. CREB regulates memory allocation in the insular cortex. Curr Biol. 2014 Nov 13;24(23):2833-283 (2014)
CREB CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first des ...
may be activated by multiple pathways. For example, the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathways appear to participate in neuronal allocation. When activated by the second messengers such as
cAMP Camp may refer to: Areas of confinement, imprisonment, or for execution * Concentration camp, an internment camp for political prisoners or politically targeted demographics, such as members of national or minority ethnic groups * Extermination ...
and calcium ions, enzymes such as
PKA In chemistry, an acid dissociation constant (also known as acidity constant, or acid-ionization constant; denoted ) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction :H ...
and
MAP kinase A mitogen-activated protein kinase (MAPK or MAP kinase) is a type of serine/threonine-specific protein kinases involved in directing cellular responses to a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and proinflammato ...
can translocate to the nucleus and
phosphorylate In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writt ...
CREB CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first des ...
to initiate transcription of target genes.Adams, J. P., & Sweatt, J. D. (2002). Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annual Review of Pharmacology and Toxicology, 42(1), 135-163.Treisman, R. (1996). Regulation of transcription by MAP kinase cascades. Current Opinion in Cell Biology, 8(2), 205-215. PKA inhibitors can block the development of long-lasting LTP, and this is accompanied by a reduction in the transcription of genes modulated by the CREB protein.Nguyen, P. V., & Woo, N. H. (2003). Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Progress in Neurobiology,71(6), 401-437.


Metaplasticity in neuronal allocation

Metaplasticity Metaplasticity is a term originally coined by W.C. Abraham and M.F. Bear to refer to the plasticity of synaptic plasticity. Until that time synaptic plasticity had referred to the plastic nature of ''individual'' synapses. However this new form ref ...
is a term describing the likelihood that a given stimulus will induce neuronal plasticity, based on the previous activity experienced by that neuron. Several studies provide evidence that neurons receiving “priming activity” (such as neurotransmitters, paracrine signals, or hormones) minutes to days prior will show a lower threshold for induction of long term potentiation (LTP).Goussakov, I. V., Fink, K., Elger, C. E., & Beck, H. (2000). Metaplasticity of mossy fiber synaptic transmission involves altered release probability. The Journal of Neuroscience, 20(9), 3434-3441.Abraham, W. C., & Tate, W. P. (1997). Metaplasticity: a new vista across the field of synaptic plasticity. Progress in Neurobiology, 52(4), 303-323.Koon, Alex C., et al. "Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling." Nature neuroscience 14.2 (2011): 190-199. Other studies find that activation of NMDARs can also raise the stimulation threshold for induction of LTP. Thus, similar inputs on groups of neurons may induce LTP in some but not others based on prior activity of those neurons.Rudy, J. (2014). Specific mechanisms: Targeting plasticity products. In The neurobiology of Learning and Memory (Second ed., pp. 113-116). Sinauer Associates. Signaling mechanisms implicated in these metaplastic effects include
autophosphorylation Autophosphorylation is a type of post-translational modification of proteins. It is generally defined as the phosphorylation of the kinase by itself. In eukaryotes, this process occurs by the addition of a phosphate group to serine, threonine o ...
of αCaMKII,Zhang, L., Kirschstein, T., Sommersberg, B., Merkens, M., Manahan-Vaughan, D., Elgersma, Y., & Beck, H. (2005). Hippocampal synaptic metaplasticity requires inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II. The Journal of Neuroscience, 25(33), 7697-7707. changes in
NMDA receptor The ''N''-methyl-D-aspartate receptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and predominantly Ca2+ ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other ...
subunit composition,Cho, K. K., Khibnik, L., Philpot, B. D., & Bear, M. F. (2009). The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex. Proceedings of the National Academy of Sciences, 106(13), 5377-5382. and activation of
voltage-dependent calcium channel Voltage-gated calcium channels (VGCCs), also known as voltage-dependent calcium channels (VDCCs), are a group of voltage-gated ion channels found in the membrane of excitable cells (''e.g.'' muscle, glial cells, neurons) with a permeability t ...
s.Lee, M. C., Yasuda, R., & Ehlers, M. D. (2010). Metaplasticity at single glutamatergic synapses. Neuron, 66(6), 859-870. These metaplastic effects regulate memory destabilization and reconsolidation.Finnie, Peter SB, and Karim Nader. "The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation." Neuroscience & Biobehavioral Reviews 36.7 (2012): 1667-1707.


Synaptic allocation

Synaptic allocation pertains to mechanisms that influence how
synapse In the nervous system, a synapse is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending o ...
s come to store a given memory. Intrinsic to the idea of synaptic allocation is the concept that multiple synapses can be activated by a given set of inputs, but specific mechanisms determine which synapses actually go on the encode the memory. Allocation of memories to specific synapses are key to determining where
memories Memory is the faculty of the mind by which data or information is Encoding (memory), encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future Action (philosophy), action. I ...
are stored.


Synaptic tagging and capture

Synaptic activity can generate a synaptic tag, which is a marker that allows the stimulated spine to subsequently capture newly transcribed plasticity molecules such as Arc. Synaptic activity can also engage the
translation Translation is the communication of the semantics, meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The English la ...
and transcription machinery. Weak stimulation can create synaptic tags but will not engage the translation and transcription machinery, whereas strong stimulation will create synaptic tags and also engage the translation and transcription machinery. Newly generated plasticity-related proteins (PRPs) can be captured by any tagged synapses, but untagged synapses are not eligible to receive new PPs. After a certain time period, synapses will lose their tag and return to their initial state. Furthermore, the supply of new PRPs will deplete. The tags and new PRPs must overlap in time to capture the PRPs.Frey, U. & Morris, R. G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188 (1998)Govindarajan, A. et al. The dendritic branch is the preferred integrative unit for protein synthesis-dependent LTP. Neuron 69, 132–146 (2011). The synaptic tag is inversely related to time between inducing stimuli, and is said to be temporarily asymmetrical. Furthermore, the tagging is also inversely related to the distance between spines, an important spatial properties of tagging. Conversely confirming the temporal and spatial properties of the synaptic tagging, subsequent imaging studies revealed that there are not only temporal constraints but also structural constraints that limit synaptic tagging and capture mechanisms. Overall, these studies demonstrate the complexity of synaptic tagging and capture, and give further insight into how exactly this mechanism occurs.


Spine clustering

Synaptic clustering refers to the addition of new spines to a dendritic area where other spines have been added by previous learning. Spine clustering may result in the amplification of synaptic inputs via diffusible molecular crosstalk that occurs near activated spines.1 For example, studies have shown that signaling molecules synthesized at one spine, (e.g. activated RAS and/or RHOA), may diffuse out and influence spine growth at nearby sites.Harvey, C. D. et al. The spread of Ras activity triggered by activation of a single dendritic spine. Science 321, 136–140 (2008). The Rho GTPase
CDC42 Cell division control protein 42 homolog (Cdc42 or CDC42) is a protein that in humans is encoded by the ''CDC42'' gene. Cdc42 is involved in regulation of the cell cycle. It was originally identified in ''S. cerevisiae'' (yeast) as a mediator of ...
may also contribute to spine clustering by driving long-term spine volume increases. Recent studies also suggest that this process may be regulated by
NMDA receptor The ''N''-methyl-D-aspartate receptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and predominantly Ca2+ ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other ...
activation and nitric oxide stimulation.Murakoshi, H., Wang, H. & Yasuda, R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472, 100–104 (2011) Spine clustering in the
motor cortex The motor cortex is the region of the cerebral cortex involved in the planning, motor control, control, and execution of voluntary movements. The motor cortex is an area of the frontal lobe located in the posterior precentral gyrus immediately ...
reflects a morphological mechanism for synaptic storage of specific motor memories. These clustered spines are more stable than non-clustered new spines. This type of addition of spines occurs in a specific pattern, meaning that spines added after one task will not cluster with spines after an alternative task.Fu, M. et al. Repetitive motor learning induces coordinated formation of clustered
dendritic spines A dendritic spine (or spine) is a small membrane protrusion from a neuron's dendrite that typically receives input from a single axon at the synapse. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical sig ...
in vivo. Nature 483, 92–95 (2012).
Loss of spine clustering is also a possibility as shown in some
fear conditioning Pavlovian fear conditioning is a behavioral paradigm in which organisms learn to predict aversive events. It is a form of learning in which an aversive stimulus (e.g. an electrical shock) is associated with a particular neutral context (e.g., a r ...
experiments, leading to the net loss of spines in the frontal association cortex, a region strongly associated in fear conditioning, which strongly correlates with memory on
recall Recall may refer to: * Recall (baseball), a baseball term * Recall (bugle call), a signal to stop * Recall (information retrieval), a statistical measure * ReCALL (journal), ''ReCALL'' (journal), an academic journal about computer-assisted langua ...
. Once spines were added after fear extinction had a similar orientation to the spines lost during the original fear conditioning.Lai, C. S. et al. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483, 87–91 (2012).


Mechanisms that link memories across time

Denise Cai in Alcino J. Silva's laboratory found that memory allocation mechanisms are used to connect or link memories across time. In their studies they demonstrated that one contextual memory triggers the activation of CREB and subsequent enhancements in excitability in a subset of hippocampal CA1 neurons, such that a subsequent contextual memory, occurring within 5 hours, can be allocated to some of the same CA1 neurons that stored the first contextual memory. As a consequence of this overlap between the CA1 memory engrams for the two contextual memories, recall of one contextual memory activates the retrieval of the second memory. These studies also showed that contextual memory linking mechanisms are disrupted in the aging brain, and that increasing excitability in a subset of CA1 neurons reverses these memory linking deficits. It is very likely that impairments in CREB and neuronal excitability in aging brains could account for abnormalities in memory linking and possibly related source memory problems (
source amnesia Source amnesia is the inability to remember where, when or how previously learned information has been acquired, while retaining the factual knowledge. This branch of amnesia is associated with the malfunctioning of one's explicit memory. It is l ...
) associated with aging. In July 2018, in a special issue about "13 Discoveries that Could Change Everything", Scientific American highlighted the Silva laboratory's discovery of Memory Allocation and Linking Silva, AJ How one memory attaches to another. In Revolutions in Science: Discoveries that could change everything. Scientific American; July 2018, Volume 27, Issue 3s


Current and future research


Integrating synaptic and neuronal allocation

Experiments have yet to investigate the interaction of allocative mechanisms between the neuronal and synaptic levels. The two classes of processes are very likely to be interconnected considering the relationship between neurons and synapses in a neuronal network. For example, the synaptic tagging and capture involved in synaptic allocation requires the allocation of the neurons to which the synapses belong to. Moreover, increases in neuronal excitability in a given neuronal ensemble may affect some dendrites more than others, thus biasing memory storage to synapses in dendrites with higher excitability.Larkum, M. E. & Nevian, T. Synaptic clustering by dendritic signalling mechanisms. Curr. Opin. Neurobiol. 18, 321–331 (2008)Losonczy, A., Makara, J. K. & Magee, J. C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008) Similarly, on the recruited neurons displaying increased excitability, specific synapses need to be selected for in order to store the information in the form of synaptic plasticity. One aspect of integration involves
metaplasticity Metaplasticity is a term originally coined by W.C. Abraham and M.F. Bear to refer to the plasticity of synaptic plasticity. Until that time synaptic plasticity had referred to the plastic nature of ''individual'' synapses. However this new form ref ...
and how acquisition and storage of one memory changes the neural circuit to affect the storage and properties of a subsequent memory. Cellular excitability has been proposed as one of the mechanisms responsible for heterosynaptic metaplasticity, the modulation of subsequent plasticity at different synapses.Frick, A. & Johnston, D. Plasticity of dendritic excitability. J. Neurobiol. 64, 100–115 (2005) CREB functions through elevating cell excitability as described above, thus it is also possibly involved in hetrerosynaptic metaplasticity. Synaptic tagging and capture, as introduced in sections above, can result in a weak memory (capable of triggering only E-LTP), which would otherwise be forgotten, but it can be strengthened and stabilized by a strong memory (capable of triggering L-LTP), which is a form of heterosynaptic plasticity.


Future research

Despite extensive research into the individual mechanisms of memory allocation, there are few studies investigating the integration of these mechanisms. It has been proposed that understanding the implications of the molecular, cellular and systemic mechanisms of these processes may elucidate how they are coordinated and integrated during memory formation. For example, identifying the plasticity-related proteins (PRPs) involved in synaptic tagging and capture as well as the upstream and downstream molecules of CREB can help reveal potential interactions. Investigating the functional significance of these mechanisms will require tools that can directly manipulate and image the processes involved in the proposed mechanisms in vivo. For instance, it is possible that the behavioral interactions ascribed to synaptic tagging and capture are caused by protein synthesis-dependent increases in
neuromodulators Neuromodulation is the physiology, physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic receptor, metabotropic, G protein-coupled rece ...
such as
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. It is an amine synthesized ...
rather than by synaptic tagging mechanisms. Examining the behavioral effects under direct manipulation can help rule out these other possible causes.


See also

*
Memory consolidation Memory consolidation is a category of processes that stabilize a memory trace after its initial acquisition. A memory trace is a change in the nervous system caused by memorizing something. Consolidation is distinguished into two specific processe ...
* Engram *
Multiple trace theory In psychology, multiple trace theory is a memory consolidation model advanced as an alternative model to Recognition memory, strength theory. It posits that each time some information is presented to a person, it is Neural coding, neurally encoded ...
*
Long-term potentiation In neuroscience, long-term potentiation (LTP) is a persistent strengthening of synapses based on recent patterns of activity. These are patterns of synaptic activity that produce a long-lasting increase in signal transmission between two neuron ...
* Synaptic tagging


References

{{DEFAULTSORT:Neuronal memory allocation Neuroscience of memory